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Constructing a discrete model like a cellular automaton is a powerful method for understanding various
dynamical systems. However, the relationship between the discrete model and its continuous analogue is, in
general, nontrivial. As a quantum-mechanical cellular automaton, a discrete-time quantum walk is defined
to include various quantum dynamical behavior. Here we generalize a discrete-time quantum walk on a
line into the feed-forward quantum coin model, which depends on the coin state of the previous step. We
show that our proposed model has an anomalous slow diffusion characterized by the porous-medium
equation, while the conventional discrete-time quantum walk model shows ballistic transport.

C
ellular automata – discrete models that follow a set of rules1 – have been analyzed in various dynamical
systems in physics, as well as in computational models and theoretical biology; well-known examples
include crystal growth and the Belousov-Zhabotinsky reaction. To simulate quantum mechanical phe-

nomena, Feynman2 proposed a quantum cellular automaton (the Feynman checkerboard). This model, defined
in the general case by Meyer3, is known as the discrete-time quantum walk (DTQW). Since the DTQW on a graph
is a model of a universal quantum computation4,5, it is of great utility, especially in quantum information6–9.
Furthermore, the DTQW has been demonstrated experimentally in various physical systems10–24 to reveal
quantum nature under dynamical systems.

As the cellular automaton can be mapped to various differential equations by taking the continuous limit, some
DTQW models can be mapped to the Dirac equation25–27, the spatially discretized Schrödinger equation28,29, the
Klein-Gordon equation27,30, or various other differential equations31,32. These equations have ballistic transport
properties, which are reflected mathematically in the one-dimensional (1D) DTQW with a time- and spatial-
independent coin operator, i.e. a 1D homogeneous DTQW33. We consider here the 1D DTQW model. Physically,
the standard deviation of the homogeneous DTQW is s(t) , t, whereas the unbiased classical random walk has a
standard deviation of s tð Þ*

ffiffi
t
p

.
In the homogeneous DTQW, the time evolution of a quantum particle (walker) is given by a unitary operator U

defined on the composite Hilbert spaceHs6Hc, whereHs : ~span jj i,j[Zf g is the walker Hilbert space, andHc

is the two-dimensional coin Hilbert space. For a unitary operator U, the quantum state evolves in each time step t
by

Ytz1
�� �

~U Ytj i ð1Þ

with

Ytj i~
X?

j~{?

jj i6 at
j

bt
j

� �
, ð2Þ

where the upper at
j (lower bt

j ) component corresponds to the left (right) coin state at the j-th site at time step t. As
an example, the time evolution of the DTQW is given by

atz1
j{1~cos h at

j{sin h bt
j ,

btz1
jz1~sin h at

jzcos h bt
j :

ð3Þ
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The j-th site probability at time step t is given by Pt
j ~ at

j

��� ���2z bt
j

��� ���2,

and
X?

j~{?
Pt

j ~1 is satisfied for each time step t.

As a generalization of Eq. (3), we define a DTQW with a feed-
forward quantum coin described by

atz1
j{1~gt

j at
j{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ gt

j

��� ���2
r

bt
j ,

btz1
jz1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ gt

j

��� ���2
r

at
jz gt

j

� ��
bt

j ,

ð4Þ

with the site-dependent rate function

gt
j ~ at

j{1

��� ���zi bt
jz1

��� ���, ð5Þ

which incorporates the nearest-neighbor interactions. Since this
quantum coin depends on the probability distribution of the coin
states on the nearest-neighbor sites at the previous step, this model is
called a feed-forward DTQW. It is remarked that the feed-forward
DTQW is one of the nonlinear DTQW models. Note that if we set the
rate function gt

j to g 5 cos h, which is time and site independent, then
the model in Eq. (4) reduces to the homogeneous model in Eq. (3).
We will show that our proposed feed-forward DTQW is experiment-
ally feasible. Furthermore, we will show that this model shows the
anomalous diffusion as introduced below.

One of the famous anomalous diffusion equations is the porous
medium equation (PME)34, defined by

L
Lt

p x,tð Þ~ L2

Lx2
pm x,tð Þ, ð6Þ

where the real parameter m . 1 characterizes the degree of porosity
of the porous medium. It is known that the PME can be derived from
three physical equations for the density r, pressure p, and velocity v
of the gas flow: the equation of continuity, hr/ht 1 = ? (rv) 5 0;
Darcy’s law, v / 2=p; and the equation of state for a polytropic gas,
p / rn, where n is the polytropic exponent and m 5 n 1 1. One of the
peculiar features of the PME is the so-called finite propagation, which
implies the appearance of a free boundary separating the positive
region (p . 0) from the empty region (p 5 0).

A well-known solution of the PME is the Barenblatt-Pattle (BP)
one35; it is self-similar, and its total mass is conserved during evolu-
tion. The evolutionary behavior of the BP solution was recently
studied in the context of generalized entropies and information geo-
metry36. The BP solution can also be expressed by Tsallis’ one-real-
parameter (q) generalization of a Gaussian function, i.e., the
q-Gaussian37. In the case of 1D space, the BP solution is

pq x,tð Þ! 1{ 1{qð Þ x2

s2
q tð Þ

" # 1
1{q

:expq {
x2

s2
q tð Þ

 !
, ð7Þ

with q 5 2 2 m. Here, s2
q tð Þ is a positive parameter that characterizes

the width of the q-Gaussian at time t and is similar to the variance
s2

q~1 tð Þ in a standard Gaussian. In other words, the parameter sq(t)
characterizes the spread of the q-Gaussian distribution38,39;

sq tð Þ!t
1

3{q, ð8Þ

which reduces to sq~1 tð Þ!
ffiffi
t
p

in the limit of q R 1. Note that in the
same limit, the q-Gaussian reduces to the standard Gaussian,

exp {x2
.

s2
q~1 tð Þ

� �
, and the PME reduces to the standard heat

equation hp/ht 5 h2p/hx2.
In this paper, we analyze a specific feed-forward DTQW with an

experimental proposal using the polarized state and optical mode.
We show numerically that the probability distributions of the
feed-forward DTQW model have anomalous diffusion characterized

by sq50.5(t) , t0.4. These dynamics are consistent with the time
evolution of the self-similar solution35 of the PME, which is
known to describe well the anomalous diffusion of an isotropic
gas through a porous medium. Furthermore, we show analytically
that the interference terms in our model help the speedup of the
associated Markovian model but does not help the quadratic
speedup like the homogeneous DTQW does40. Note that although
anomalous diffusion was found numerically in a nonlinear
model41, an aperiodic time-dependent coin model42, and the his-
tory-dependent coin43 from the time dependence of the variance
sq51(t), the partial differential equation (PDE) corresponding to
their models have not derived due to the lack of the numerical
step (about 100 step). Therefore, we have not yet revealed the
origin of the anomalous diffusion in the DTQW.

Results
Experimental proposal of feed-forward DTQW. We propose an
optical implementation of the feed-forward DTQW. In the simple
optical implementation of the homogeneous DTQW, the walker
space uses the spatial mode and the coin space does the polarized
state. The shift uses the polarized beam splitter and the quantum coin
uses the quarter-wave, half-wave, and quarter-wave plates, which can
arbitrarily rotate the polarized state in the Poincaré sphere. This was
experimentally done in Refs. 10–12,16–22.

Let us construct the feed-forward system of the quantum coin. The
detectors put at each path to evaluate the probability distribution of

the coin state at
j

��� ���2 and bt
j

��� ���2. Since our proposed quantum coin

depends on at
j

��� ��� and bt
j

��� ���, we can calculate the coin operator at the

jth site. According to the Jones calculation44 to satisfy Eq. (4), we
control the angels of the quarter-wave, half-wave, and quarter-wave
plates for each path. This can be taken as the quantum coin operator
with the feed-forward. This is depicted in Fig. 1. In what follows,
we consider the long time time evolution of the feed-forward
DTQW.

Numerical results of feed-forward DTQW with anomalous
diffusion. To study the time evolution of the feed-forward DTQW
model, the initial state should have nonzero coin states at the nearest-
neighbor sites. This can be easily understood by considering the
following example. Let us take (a0

0, b0
0) as the only non-zero initial

state. In this case, the rate is g0
0~0, because there is no neighboring

state. From the map in Eq. (4), we see that the nonzero states at t 5 1
are a1

{1~{b0
0 and b1

1~a0
0. This gives g1

{1~g1
1~0, and we see that

the only nonzero state is a2
0,b2

0

	 

~ {b1

1,a1
{1

	 

~ {a0

0,{b0
0

	 

at t 5

2. This state at t 5 2 only differs in sign (or phase) from the initial
state. Thus if the initial state is concentrated at a single site, no
spreading occurs; the state only oscillates around the initial site.

Figure 2 (A) shows a typical probability distribution of the feed-
forward DTQW after a long-time evolution. See the Supplemen-
tary Movie for more details. The initial state was set as

a0
0,b0

0

	 

~ a0

1,b0
1

	 

~ 1=2,i=2ð Þ. We note that the probability distri-

bution diffuses very slowly and does not approach a Gaussian.
These features are often observed in anomalous diffusion. It is also
remarked that such behavior has not yet seen in DTQWs with the
position-dependent coin45–48, which show the localization property.

We performed long-time numerical simulations of the feed-for-
ward DTQW model [Eq. (4)] for up to t , 108 steps. To study the
asymptotic behavior, we take running averages of the numerical
solutions to reduce the influence of multiple spikes. The averaged
data were fitted with the q-Gaussian of Eq. (7) to determine the
corresponding q-generalized standard deviation sq(t), as shown in
Fig. 2 (B). We note that the averaged data at each time step are well
fitted by the q-Gaussian with q 5 0.5.
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The long-time evolution of sq(t), plotted in Fig. 2 (C), reveals that
the time evolution of the feed-forward DTQW model is well char-
acterized by sq50.5(t) , t0.4, which is the same time dependency for
q 5 0.5 of the PME [Eq. (8)].

Analytical derivation of anomalous diffusion in the associated
Markov model of feed-forward DTQW. The relationship between
our model and the PME can be explored using the decomposition
method of Romanelli et al.40,49, in which the unitary evolution of a
DTQW model is decomposed into Markovian and interference

terms. We obtain the following map for both coin distributions

at
j

��� ���2 and bt
j

��� ���2:

atz1
j{1

��� ���2~ gt
j

��� ���2 at
j

��� ���2z 1{ gt
j

��� ���2� �
bt

j

��� ���2{2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ gt

j

��� ���2
r

bt
j ,

btz1
jz1

��� ���2~ 1{ gt
j

��� ���2� �
at

j

��� ���2z gt
j

��� ���2 bt
j

��� ���2z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ gt

j

��� ���2
r

bt
j ,

ð9Þ
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Figure 1 | Optical implementation of the feed-forward DTQW model. Figure shows our experimental proposal of our model. From the intensity of the

detectors for each path, the polarizers should be changed. This can be taken as the feed-forward quantum coin.

Figure 2 | Anomalous slow diffusion of the feed-forward DTQW model. Its probability distribution at t 5 107 step displayed in Panel (A) with running

averaged over 10 data sets (light blue line) is fitted by the q-Gaussian (7) with q 5 0.5 (red line) to obtain the q-generalized standard deviation sq(t) in

Panel (B). Panel (C) shows the long-time evolution of the q-generalized standard deviation sq(t) (green dots), which is well fitted by sq50.5(t) , t0.4

(red line).
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where the two terms including bt
j~<e gt

j at
j bt

j

� ��h i
are interference

terms, and <e z½ � is the real part of a complex number z.
Neglecting the interference terms and introducing the abbrevia-

tions Lt
j~ at

j

��� ���2 and Rt
j~ bt

j

��� ���2, we get the associated Markovian

model;

Rtz1
jz1zLtz1

j{1~Rt
jzLt

j , ð10Þ

Rtz1
jz1{Ltz1

j{1~ 2 Lt
j{1{Rt

jz1

� �
{1

n o
Rt

j{Lt
j

� �
: ð11Þ

The numerical simulation of the associated Markovian model is
performed under initial conditions of R0

0,L0
0

	 

~ R0

1,L0
1

	 

~1=4, and

the typical probability distribution shown in Fig. 3 (A) is well fitted by
the q-Gaussian with q 5 0.0. Furthermore, Fig. 3 (B) shows that the
time evolution of sq(t) of the associated Markovian model is well
fitted to sq50.0(t) , t0.33, which again is the same time dependency as
the PME for q 5 0.

It is known that the classical Markovian model, i.e. one without the
interference terms of the homogeneous DTQW, satisfies the stand-
ard heat equation in the continuous limit. Consequently, the assoc-
iated asymptotic probability distribution is a standard Gaussian. This
implies that the ballistic transport property of the homogeneous
DTQW comes from the interference term40. We thus consider the
continuous limit50 of the associated Markovian model.

We introduce the density r(x, t) and current j(x, t) as

r x,tð Þ~Lt
jzRt

j , j x,tð Þ~ Rt
j{Lt

j

� �.
Dx , ð12Þ

where Dx is the difference of the nearest-neighbor sites. Taking a
Taylor expansion of Eq. (10), we get

L
Lt

r x,tð Þz L
Lx

j x,tð Þz 1
2

L2

Lx2
r x,tð Þ~0, ð13Þ

in the diffusion limit, i.e., the quantity (Dx)2/Dt remains constant (set
to unity here for simplicity) as Dt, Dx R 0 with the one-step time
difference Dt. In a similar manner, by expanding Eq. (11) and taking
the diffusion limit, we obtain

j x,tð Þ~{
1

2 1{r x,tð Þð Þ
L
Lx

r x,tð Þ, ð14Þ

which implies a breakdown in Fick’s first law (j / 2hr/hx) and is
the hallmark of anomalous diffusion. By substituting Eq. (14) into
Eq. (13), we obtain the following nonlinear PDE:

L
Lt

r x,tð Þ~ 1

2 1{r x,tð Þð Þ2

|
1
2

L2

Lx2
r2 x,tð Þ{r2 x,tð Þ L2

Lx2
r x,tð Þ

� �
:

ð15Þ

Evaluating the asymptotic solution of this nonlinear PDE, after a
long-time evolution, r(x, t) becomes much less than unity. As the
rough approximation in this long-time limit, we have 1 2 r < 1 and
r2 < 0, and Eq. (15) is thus well approximated by

L
Lt

r x,tð Þ< 1
4

L2

Lx2
r2 x,tð Þ, ð16Þ

which is nothing but the PME in Eq. (6) with m 5 2 (q 5 0). We thus
conclude that the approximated asymptotic solution of Eq. (15) is a
q-Gaussian with q 5 0. In addition, we can show that this result is
mathematically valid by applying the asymptotic Lie symmetry
method51 (see Method). This method can give an equivalence
between the asymptotic solution of the PDE and the analytically-
solved one of the other PDE without analytically solving this PDE.
Therefore, the associated Markovian model exhibits anomalous dif-
fusion described by the PME in Eq. (6) with m 5 2. This implies that
the interference term of our model leads to the speed-up of the
quantum walker sq50.5 , t0.4 compared to the associated
Markovian model sq50 , t1/3 and makes the zig-zag shape around
the q-Gaussian distribution.

In summary, we have proposed a feed-forward DTQW model Eq.
(4) in which the coin operator depends on the coin states of the
nearest-neighbor sites. We show that this model is experimentally
feasible. Our feed-forward DTQW model asymptotically satisfies the
PME for m 5 1.5 (q 5 0.5) and exhibits anomalous slow diffusion
sq50.5(t) , t0.4 from the probability distribution and the time
dependency of the standard deviation defined in the q-Gaussian
distribution.

Discussion
In this section, we show that our results after the long-time numerical
simulations have no initial coin dependence, and that the inter-
ference term can be taken as the noise source in addition to the
PME. First, while the above analysis uses the only fixed initial coin
states as a0

0,b0
0

	 

~ a0

1,b0
1

	 

~ 1=2,i=2ð Þ, we numerically confirm that

there is almost no dependence of the initial coin state except for the
trivial cases as follows. We have performed the several numerical

Figure 3 | Anomalous slow diffusion of the associated Markovian model for the nonlinear quantum walk. Panel (A) shows the probability distribution

of the associated Markovian model at t 5 107 step (green dots) fitted by the q-Gaussian, yielding q 5 0.0 and sq50.0(t) 5 283 (red line). Panel (B) shows the

long-time evolution of the q-generalized standard deviation sq(t) of the associated Markovian model (blue dots). It is well fitted by sq50.0(t) , t0.33

(red line).
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simulations for the initial state specified by a0
0,b0

0

	 

~

cosbp
� ffiffiffi

2
p

,sinbp
� ffiffiffi

2
p	 


and a0
1,b0

1

	 

~ coscp

. ffiffiffi
2
p

,sincp
. ffiffiffi

2
p� �

with the real-parameter b and c ranging from 0 to 1. Note that the
trivial cases, b 5 0.5, c 5 0 and b 5 0, c 5 0.5, lead to the localization
of the probability distribution for any time, and we cannot define the
parameter q for the trivial initial states. Figure 4 shows the numerical
evaluation of the parameter q of q-Gaussian distribution from the
data at the two different time steps t 5 106 and t 5 107, under the
assumption to satisfy the stationary solution of the PME [Eqs. (7) and
(8)]. The evaluated q-parameters for the various initial states are
q~0:5z0:116

{0:047 except for the trivial cases. Therefore, we can conclude
that our nonlinear model shows the anomalous slow diffusion to
satisfy the PME with m^1:5 (q^0:5) without the initial state
dependence.

Finally, let us consider the difference between the probability dis-
tribution of our model and the q-Gaussian distribution with q 5 0.5,
as shown in Fig. 2 (B); the power spectrum of this difference exhibits
a white noise as shown in Fig. 5. This power spectrum divided by the
physical time scale t0.4 may remain finite in the asymptotic case,
which suggests that our nonlinear model may be mapped to the
stochastic PME, i.e. the PME plus a white noise term, in the continu-
ous limit. This stochasticity must come from the interference term.
The problem of extracting the stochasticity from a deterministic
process has been discussed in another context, that of Mori’s noise52.
Further analysis of this model may reveal the origin of the stochas-
ticity. This is interesting as a purely mathematical problem of a
stochastic nonlinear partial differential equation and for showing
the relationship between the discrete model and its continuous limit.

Methods
In what follows, the solution of Eq. (15) is asymptotically identical to the solution of
Eq. (16). This is mathematically equivalent to showing that the probability distri-
bution

r q~0ð Þ xð Þ~ 1

Z sq~0
	 
 1{

x2

s2
q~0

" #
, ð17Þ

is invariant under an asymptotic Lie symmetry51 of the nonlinear partial differential
equation (15). In other words,

Ltr~
1

2 1{rð Þ2
1
2
Lxxr2{r2Lxxr

� 

: ð18Þ

In Eq. (17), Z(sq50) 5 4sq50/3 is the normalization factor, and in what follows, the
argument of this function is omitted where possible and htr is denoted as rt for
simplicity.

We follow the asymptotic Lie symmetry method and notations in Ref. 51. Under an
infinitesimal transformation with the generator

X~jLxztLtzQLr, ð19Þ

that is

x.x̂~xzEj x,t,rð Þ,

t.t̂~tzEt x,t,rð Þ,

r.r̂~rzEQ x,t,rð Þ,

ð20Þ

the function r(x, t) is mapped to a new function r̂ x,tð Þ, with

r̂ x,tð Þ~r x,tð ÞzE Q{rxj{rtt½ �r~r x,tð Þ: ð21Þ

By applying this to the probability distribution Eq. (17), we see that the trans-
formation X with j 5 2x leaves Eq. (17) invariant if and only if

Q~rxj~{rxx~
2x2

Zs2
q~0

: ð22Þ

Note that t 5 g ? t remains unrestricted at this stage because r(q50)(x) does not
explicitly depend on time t. Conversely, the function r(x) is invariant under

X~{xLxztLtz2x2
.

Zs2
q~0

� �
Lr for any t if and only if r(x) is of the form given in

Eq. (17).
Following the general procedure for a Lie group analysis of differential equations53,

the second prolongation of X is described by

Y~XzYtLrtzYxLrxzYxxLrxx: ð23Þ

The coefficients Yt, Yx, and Yxx are defined as follows. Under an infinitesimal
transformation of X, the partial derivatives are transformed as rx.rxzEYx ,
rt.rtzEYt , and rxx.rxxzEYxx . We then readily obtain

Qx~
4x

Zs2
q~0

, Qxx~
4

Zs2
q~0

, Qr~0, Qrr~0 : ð24Þ

The coefficients Yt, Yx, and Yxx are then obtained by applying the prolongation
formula (2.39) from Ref. 52:

Yt Qr{tt

� �
rt~{grt , ð25Þ

Yx~Qpz Qr{jp

� �
rp~

4x
Zs2

q~0
zrx , ð26Þ

Yxx~Qxxz2QxrrxzQrrr2
xz Qr{2jx

� �
rxx~

4
Zs2

q~0
z2rxx: ð27Þ

We note that Eq. (18) can be written as

rt~C1 rxð Þ2zC2rxx ð28Þ

with

C1~
1

2 1{rð Þ2 , C2~
r

2 1{rð Þ : ð29Þ

Figure 4 | Initial coin state dependence. Changing the parameters b and c,

we numerically evaluate the parameter q of q-Gaussian distribution for 225

different initial states expressed by a0
0,b0

0

	 

~ cos bp

. ffiffiffi
2
p

, sin bp
. ffiffiffi

2
p� �

and a0
1,b0

1

	 

~ cos cp

. ffiffiffi
2
p

,sin cp
. ffiffiffi

2
p� �

. Note that the trivial cases, b 5

0.5, c 5 0 and b 5 0.5, c 5 1, are not plotted. Our fitting result except for

the trivial cases is q~0:5z0:116
{0:047.

Figure 5 | The difference between the nonlinear model and the fit. The

power spectrum of the difference between the probability distribution of

our model and the q-Gaussian with q 5 0.5 at 107 step. To remove the

effects of the expectation value, we replace x with x 2 36.91 in the q-

Gaussian with q 5 0.5 [Eq. (7)].

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4427 | DOI: 10.1038/srep04427 5



The asymptotic Lie symmetry condition

Y rt{C1 rxð Þ2{C2rxx

	 

~Yt{2C1rxY

x{C2Y
xx{C01Q rxð Þ2{C02Qrxx~0 ð30Þ

with

C01~LrC1~
1

2 1{rð Þ3 , C02 ~LrC2~
1

2 1{rð Þ2
, ð31Þ

can be written in the following compact form:

A0 x,t,rð ÞzA1 x,t,rð ÞrxzA2 x,t,rð Þ rxð Þ2zA3 x,t,rð Þrxx~0: ð32Þ

When the condition in Eq. (30) is fulfilled, each Ak(k 5 0, 1, 2, 3) function must vanish
separately in the asymptotic limit

r x,tð Þj j?0 for xj j??, ð33Þ

implying that the variance sq50 also becomes infinity in the asymptotic limit from Eq.
(17);

sq~0?? for xj j??: ð34Þ

The function A3 can be expressed as

A3~
1

2 1{rð Þ r: gz2ð Þz 4
1{rð ÞZs2

q~0

( )
, ð35Þ

which must be nonzero as sq50 R ‘, unless we choose

g~{2: ð36Þ

Making this choice, X becomes

X~jLx{2t Ltz
2x2

Zs2
q~0

Lr, ð37Þ

and A3 reduces to

A3~
2

1{rð Þ2Zs2
q~0

: ð38Þ

Thus, A3 R 0 as sq50 R ‘.
In a similar manner, A0, A1, and A2 are given by

A0~
2r

1{rð ÞZs2
q~0

, A1~
4

1{rð Þ2Zs2
q~0

, A2 ~
2

1{rð Þ3Zs2
q~0

, ð39Þ

and all become zero as sq50 R ‘. Therefore, we conclude that the distribution in Eq.
(17) is an invariant solution for the transformation X of Eq. (37), which is an
asymptotic symmetry for large jxj of the nonlinear partial differential equation Eq. (18).
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