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Abstract – We study a long-range–interaction generalisation of the one-dimensional Fermi-Pasta-
Ulam (FPU) β-model, by introducing a quartic interaction coupling constant that decays as
1/rα (α ≥ 0) (with strength characterised by b > 0). In the α → ∞ limit we recover the
original FPU model. Through molecular dynamics we show that i) for α ≥ 1 the maximal
Lyapunov exponent remains finite and positive for an increasing number of oscillators N , whereas,
for 0 ≤ α < 1, it asymptotically decreases as N−κ(α); ii) the distribution of time-averaged velocities
is Maxwellian for α large enough, whereas it is well approached by a q-Gaussian, with the index
q(α) monotonically decreasing from about 1.5 to 1 (Gaussian) when α increases from zero to close
to one. For α small enough, a crossover occurs at time tc from q-statistics to Boltzmann-Gibbs
(BG) thermostatistics, which defines a “phase diagram” for the system with a linear boundary
of the form 1/N ∝ bδ/tγ

c with γ > 0 and δ > 0, in such a way that the q = 1 (BG) behaviour
dominates in the limN→∞ limt→∞ ordering, while in the limt→∞ limN→∞ ordering q > 1 statistics
prevails.

Copyright c© EPLA, 2014

More than one century ago, in his historical book
Elementary Principles in Statistical Mechanics [1], Gibbs
remarked that systems involving long-range interactions
will be intractable within his and Boltzmann’s theory,
due to the divergence of the partition function. This
is of course the reason why no standard temperature-
dependent thermostatistical quantities (e.g., specific heat)
can possibly be calculated for the free hydrogen atom, for
instance. Indeed, unless a box surrounds the atom, an in-
finite number of excited energy levels accumulate at the
ionisation value, which yields a divergent canonical parti-
tion function at any finite temperature. Related discus-
sions can be seen in [2–5], for instance.

To investigate the deep consequences of Gibbs’ remark,
we focus on the influence of the linear and nonlin-
ear long-range interactions (LRI) within an isolated sys-
tem. In particular, we use the classical Fermi-Pasta-Ulam
(FPU) β-model [6–10], which combines linear and non-
linear nearest-neighbor interactions and allows to study

separately the linear and nonlinear nature of the LRI. In
the present paper we focus primarily on the FPU β-model
with nonlinear LRI, since the most interesting phenomena
appear in this case, although we write the Hamiltonian in
a compact form which includes both kinds of long range:
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2Ñlin

N∑

n=0

N+1∑

m=n+1

(xn − xm)2

(m − n)αlin

+
b

4Ñ
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(b > 0; α, αlin ≥ 0). (1)

Fixed boundary conditions (FBC) have been considered,
i.e., x0 = xN+1 = p0 = pN+1 = 0, unit masses without
loss of generality, and unit nearest-neighbor coupling con-
stant; pn and xn are canonical conjugate pairs. At the
fundamental state, all oscillators are still at xn = 0. The
nonlinear part of the potential energy per particle varies
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with N like
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and the linear one like Ñlin ≡ Ñ(N, αlin). We notice that

Ñ(N, 0) ≃ N/2, and Ñ(∞, α) = ζ(α), where ζ(α) is the

Riemann zeta function. Let us remark that the Ñ scaling
is introduced in the Hamiltonian so as to make (following
the current use) the total energy U(N) (both kinetic and
potential contributions) extensive (i.e., proportional to N)

for all values of α. We note that the above scaling Ñ(N, α)
applies to lattices with fixed boundary conditions and is
only slightly different from the analogous scaling found
in [11,12] used for periodic boundary conditions (PBC).

The two limits i) α → 0 and ii) α → ∞ are particularly
interesting since they correspond to the extremal cases
where i) each particle interacts equally with all others in-
dependently of the distance between them and ii) only
interactions with nearest neighbors apply, recovering ex-
actly the Hamiltonian of the FPU β-model.

We note here that a significant difference of the present
study from the generalised mean-field Hamiltonian (HMF)
model [11–13] lies in the implementation of LRI only in the
quartic part of the potential in (1) (the introduction of LRI
also in the quadratic term leads to similar results as we
discuss below). Our numerical results are obtained using
the 4th-order Yoshida symplectic scheme with time step
such that the energy is conserved within 4 to 5 significant
digits. The class of initial configurations we have chosen is
of the “water-bag” type, i.e., zero positions and momenta
drawn randomly from a uniform distribution.

Let us begin our study with a systematic investigation
of the largest Lyapunov exponent λ characterising the er-
godicity of the dynamics for different values of α, N and
specific energies u = U(N)/N (unless otherwise stated, we
consider αlin → ∞). In fig. 1 we have plotted λ vs. the
system size N for different α values, ranging from 0 to 10.
The critical value α = 1, as was also found in [11], clearly
distinguishes between the following two distinct regimes:

i) For α ≥ 1 the Lyapunov exponent λ tends to stabilise
at a finite and positive value as N increases.

ii) For α < 1 the largest Lyapunov exponents are ob-
served to decrease with system size as N−κ(α), where the
dependence of the exponent κ(α) on α is shown in the
inset of fig. 1.

A remark is in order here concerning the behaviour of
λ as N → ∞. As is evident in fig. 1, especially in the case
α = 0, it is possible that as N becomes arbitrarily large,
λ converges to a small (positive) value. This would imply
that the system remains chaotic in that limit. The accu-
racy of our results to date, however, does not permit us
to distinguish between that case and λ = 0 in the N → ∞
limit.

Based on the above (and on many other results available
to date [9]), we expect that the system with short-range

(a)

(b)

Fig. 1: (Colour on-line) Maximal Lyapunov exponent for in-
creasing N calculated at t = 106. (a) For various α values
with U(N)/N = 9, b = 10 and FBC. (b) For various U(N)/N ,
b values with α = 0 and both FBC, PBC.

interactions tends to a Boltzmann-Gibbs (BG) type of
equilibrium in the thermodynamic limit, characterised by
“strong” chaos. On the other hand, the case of LRI is
expected to be “weakly” chaotic.

In order to check some of the expectations along the
lines of nonextensive statistical mechanics (based on the
nonadditive q-entropy) [14–17] and of the q-generalised
Central Limit Theorem [18], we implement a molecular-
dynamical computation of momentum distributions re-
sulting from time averages of a single water-bag–type
initial condition of (1), calculated over the interval
[tmin, tmax], where tmin is such that the kinetic temper-
ature T ≡ 2K(t)/N (K(t) being the total kinetic energy
of the system) stabilises to a nearly constant value.

In particular, for each of the histograms of fig. 2, we
assign to each pi the number of times that the momenta
fall in the i-th band, calculated repeatedly for integer mul-
tiples of time (i.e. every τ = 1 for N = 2048, τ = 2 for
N = 4096, τ = 4 for N = 8192 etc. so that we always
compare the same amount of data). Figure 2 displays the
momentum distributions for α = 0.7 and 1.4 for N = 8192.
In the top panel two histograms are shown, one for the
time interval [105, 5 ·105] and one for [4 ·105, 8 ·105], which
are well fitted by the q-Gaussian pdf:

P (p) = P (0)[1 + β(q − 1)(pP (0))2]1/(1−q), q ≥ 1, (3)
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(a)

(b)

Fig. 2: (Colour on-line) Time-averaged momentum distri-
butions for the system with N = 8192. (a) α = 0.7 for
two different time intervals: The pdf seems to approach a
q-Gaussian. (b) α = 1.4 and the distribution quickly ap-
proaches a Gaussian.

with q = 1.249. This value of q is nearly constant until
t = 1.8·106. For longer times q is observed to decrease as a
power law in time and tends to the value 1, which explains
why we call this a quasi-stationary state (QSS) [19]. In
fig. 2(b) on the other hand the distribution follows from
the beginning a pure Gaussian pdf (q → 1 in (3)) with
β = 0.043.

The q-dependence on α is shown in fig. 3, where the
transition from q-statistics to BG statistics is evident as
α exceeds 1. Starting around q ≃ 1.33, q reaches 1 at
α = 1.4 for N = 16384 particles calculated during the
time interval [5 ·105, 9 ·105]. The data of fig. 3 is averaged
over several realisations.

To check the robustness of our results with respect to
q-statistcs, we have computed the q-generalised kurtosis
(referred to as q-kurtosis in [12,20]) defined as follows:

κq(q) =

∫
∞

−∞
dp p4[P (p)]2q−1/

∫
∞

−∞
dp [P (p)]2q−1

3
[∫

∞

−∞
dp p2[P (p)]q/

∫
∞

−∞
dp [P (p)]q

]2 . (4)

Using the q values found in fig. 3 we plot in fig. 4 the nu-
merical data of q-kurtosis vs. q and find that it compares
very well with the analytical curve κq(q) = (3− q)/(1+ q)
obtained by substituting the q-Gaussian pdf (3) in eq. (4).

Repeating the above study of the momenta distribu-
tions for the case where LRI are introduced only in the

Fig. 3: (Colour on-line) α-dependence of the index q for b = 10
and U(N)/N = 9 averaged over 4 independent realisations
when N is 2048, 4096, 8192 and 2 realisations for N = 16384,
all taken in the time interval t ∈ [5 · 105, 9 · 105]. Inset:
(q∞ − q)−1 vs. N , for the data of the main figure with α = 0;
q∞ has a value estimated around 1.48, and is the intercept of
the linear dependence of q on 1/ log N . The fitting line shown
is (q∞ − q)−1 = 1.76 log N − 0.9.

Fig. 4: (Colour on-line) q-dependence of the q-kurtosis κq for
typical values of α, together with the analytical prediction
κq = (3 − q)/(1 + q) (blue curve) for the data of fig. 3 which
corresponds to N = 8192.

quadratic part of the potential of the FPU β-model, i.e. for
α → ∞, we find significant differences. First of all the
phonon band shrinks with αlin, until it collapses onto
a single value when αlin vanishes. For random initial
conditions and a large variety of values for b and for
U(N)/N , the time averaged momentum distributions are
all purely Gaussian, as in fig. 5(a). Therefore, we conclude
that q-Gaussian statistics occurs when nonlinear LRI are
present and completely disappear in the presence of purely
linear LRI. On the other hand, when both linear and non-
linear LRI apply in the FPU model, acting with two dif-
ferent ranges of interaction, αlin and α, respectively, the
value of q remains unchanged independently of the linear
range, as can be seen in fig. 5(b).
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(a)

(b)

Fig. 5: (Colour on-line) (a) Time-averaged momentum distri-
bution for linear LRI. (b) q values for the mixed system: the
linear range of interaction αlin is a running parameter, while
the nonlinear range is fixed at α = 0.7.

Several papers have neatly shown the spontaneous emer-
gence of q-Gaussians in the mean-field model of coupled
planar rotators [12,13]. Their appearance is evidently
due to the higher-order terms in the potential V =∑

i,j
1−cos(ϑi−ϑj)

rα
i,j

, beyond the quadratic ones, the first be-

ing of the quartic type as in our FPU β-model. Thus, we
conjecture that such phenomena appear in virtually any
nonlinear nonintegrable lattice of the form

H =
1

2

∑

i

p2
i +

∑

i,j

V (xi − xj)/|i − j|α. (5)

In the rest of the paper we study a fundamental ques-
tion concerning the time evolution of q. For this purpose
it is enough to restrict to the case of nonlinear LRI of
Hamiltonian (1). As can be seen in fig. 6, q can decrease
slowly in time, and eventually might reach the value q = 1.
The q-logarithm of the distributions vs. the squared mo-
menta appears as a straight line with slope −β only when
the value of q is the appropriate one, as shown in fig. 6.
The red dashed line represents a least squares fitting in the
regime [0, 350]. Two sizes N = 4096 and N = 16384 have
been considered at the times 8 · 105, 1.6 · 106 and 4 · 106 in
which the q values are accurately determined. However,
the whole picture is quite subtle. Indeed, fig. 7(b) dis-
plays an interesting crossover between two regimes in the
form of a “phase diagram”, which, for each fixed b, fol-
lows a straight line fit (in the 1/N -vs.-1/tγc plane) of the

Fig. 6: (Colour on-line) q-Logarithm of the histogram vs. mo-
menta squared. The dashed lines are the fittings P (p) =

P (0)e−β(pP (0))2 for appropriate q and β values (α = 0.7, b =
10, U(N)/N = 9). Left column: N = 4096. Right column:
N = 16384. In these plots we can appreciate the robustness of
the q-Gaussian form while time and N vary. In fact, the va-
lidity region where q-Gaussians are observed neatly improves
with increasing N , as long as time adequately increases as well,
consistently with what is shown in fig. 8.

data N ∝ tγ , separating the two “phases” (notice that,
when we decrease the nonlinearity to b = 2, the slope
of the frontier between the two phases decreases). Each
point in the graph corresponds to a value of t = tc repre-
senting the maximum time up to which q remains nearly
constant; after this time, q starts (following a power law
(see fig. 7(a))) approaching the BG value q = 1.

In fact, as we show in fig. 8, the crossover frontier can
be represented for all b by a single straight line given ap-
proximately by

1

N
∼ D(α, u)

bδ(α)

t
γ(α)
c

, (6)

where D ≥ 0 depends on α and on the energy per par-
ticle u ≡ U(N)/N ; for α = 0.7, δ ≃ 0.27 and γ ≃ 1.36.
For α > 1, of course, D vanishes and the system is ex-
pected to be uniformly ergodic, following BG statistics.
For α < 1 on the other hand, all available numerical evi-
dence strongly suggests that the system follows q-statistics
during a possibly non-ergodic QSS of “weak chaos”, as if
it were trapped (for large but finite N) in a subspace of
the full phase space, where it lives as a QSS for a very
long time.
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(a)

(b)

Fig. 7: (Colour on-line) (a) Evolution of q−1 in double logarith-
mic scale also for u ≡ U(N)/N = 9. Each point corresponds to
4 realisations of a time average in a running window of width
w = 2 · 105. N is 4096 and the tc is defined as the intersection
between the two lines. For fixed N , the QSS exists for times up
to tc, and the system slowly relaxes towards a BG behaviour
for times above tc. (b) Crossover frontier between the Gaus-
sian and q-Gaussian thermostatistical regions for the system
sizes N = 1024, 2048, 4096, 8192 at specific energy u = 9, cal-
culated for two cases, b = 2 and b = 10. The fitting lines are
1/N = 4.44 · 104/tγ

c and 1/N = 2.95 · 104/tγ
c with γ = 1.365.

Fig. 8: (Colour on-line) A unified overview of the crossover
frontier of fig. 7(b), combining the b values. The fitting straight
line is 1/N = Dbδ/tγ

c , with D = 2.3818×104 , δ = 0.27048, and
γ = 1.365.

As a final summarising remark, we emphasise the
nonuniformity, for long-range interactions (i.e., α small
enough), of the (N, t) → (∞, ∞) limit implied by the di-
agram of fig. 8. Clearly, in the limN→∞ limt→∞ order-
ing it is the q = 1 behaviour that prevails, while in the
limt→∞ limN→∞ ordering it is the q > 1 statistics that be-
comes dominant. These results have been obtained from
dynamical first principles (Newton’s law), without any a
priori hypothesis about entropy or whatever similar ther-
modynamical quantities.
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