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ABSTRACT

Context. We investigate the distribution of asteroid rotation periods from different regions of the solar system and diameter distribu-
tions of near-Earth asteroids (NEAs).
Aims. We aim to verify if nonextensive statistics satisfactorily describes the data.
Methods. Light curve data were taken from the Planetary Database System (PDS) with Rel ≥ 2. We also considered the taxonomic
class and region of the solar system. Data of NEA were taken from the Minor Planet Center.
Results. The rotation periods of asteroids follow a q-Gaussian with q = 2.6 regardless of taxonomy, diameter, or region of the solar
system of the object. The distribution of rotation periods is influenced by observational bias. The diameters of NEAs are described
by a q-exponential with q = 1.3. According to this distribution, there are expected to be 994 ± 30 NEAs with diameters greater than
1 km.

Key words. minor planets, asteroids: general

1. Introduction

Asteroids and comets are primordial bodies of the solar system
(SS). The study of the physical properties of these objects may
lead to a better understanding of the SS formation processes,
and, by inference, of the hundreds of exo-solar systems already
known. The distribution of rotation periods and diameters of
asteroids are two parameters that may yield information con-
cerning the evolution of the SS. The first attempt to describe
histograms of asteroid rotation periods was made by Harris &
Burns (1979). This work and others that have followed have
shown that rotation periods of big asteroids (D > 30–40 km)
follow a Maxwellian distribution. Harris & Pravec (2000) have
analyzed a sample with 984 objects and have confirmed that
the distribution of rotation periods of asteroids with diameters
D ≥ 40 km is Maxwellian, with 99% confidence, though this
hypothesis can be rejected at 95% confidence. They suggest that
objects within this diameter range are primordial, or originated
from collisions of primordial bodies. It is known that for medium
sized (10 < D ≤ 40 km ) and small (D < 10 km) asteroids, the
distribution of rotation periods is not Maxwellian. The analysis
of the data suggests the existence of a spin-barrier for the as-
teroids with diameters between hundreds of meters and 10 km
and with more than 11 rotations per day (d−1) (period of about
2.2 h). The absence of a substantial quantity of asteroids with
periods of less than 2.2 h may be explained by the low degree
of internal cohesion of these objects. The majority of the sam-
ple may contain rubble pile asteroids (Davis et al. 1979; Harris
1996) that are composed of fragments of rocks held together
by self-gravitation. For objects below 0.2 km rotation periods
shorter than the spin-barrier have been observed, suggesting that
these objects have a high internal cohesion, which in turn implies

that they may be monolithic bodies. The difficulty in model-
ing rotation periods of asteroids as a whole may be associated
to the combined action of many mechanisms such as collisions
(Paolicchi et al. 2002), gravitational interactions with planets
(Scheeres et al. 2004), angular momentum exchange in binary
or multiple asteroid systems (Scheeres 2002), or torques induced
by solar radiation, known as the YORP effect (from Yarkovsky-
O’Keefe-Radzievskii-Paddack; Rubincam 2000). The YORP ef-
fect strongly depends on the shape and size of the object and its
distance to the Sun.

Near-Earth asteroids (NEAs) are a subgroup of SS asteroids,
whose heliocentric orbits lead them close to the Earth’s orbit.
More than 7000 NEAs are known up to 2011. The study of these
objects is relevant because it may bring information regarding
the birth and dynamic evolution of the SS. Moreover, these ob-
jects might collide with the Earth with obvious catastrophic con-
sequences (Alvarez et al. 1980). They also may be sources of
raw material for future space projects.

The evaluation of the number of asteroids per year that may
reach the Earth as a function of their diameters is essential for
determining the potential risk of a collision. One of the first
attempts to estimate this flux was made by Shoemaker et al.
(1979).

The impact flux may be taken from the accumulated distri-
bution of NEA diameters. This distribution is indirectly obtained
through current asteroid surveys, via the absolute magnitude H.
The distribution of absolute magnitude H is described by Jedicke
et al. (2002),

log N = αH + β, (1)

where N is the number of objects, α is the “slope parameter”
and β is a constant. This relation asymptotically models the
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observed distribution of H. Departure from this power law is
probably associated with the observational bias caused by phys-
ical and dynamical properties of the asteroids (orbital elements,
size, albedo), and instrumental limitations (CCD, detection soft-
ware, among others). Accordingly, Eq. (1) may be used to de-
scribe a given population of asteroids if a correction of the bias
is made in the raw data.

The asteroid diameter, D, may be given as a function of their
absolute magnitudes and their albedos, pV , according to Bowell
et al. (1989),

D = 1329
10−H/5

√
pV

· (2)

The albedo is the rate of superficial reflection and its value is es-
sential for estimating the asteroid diameters. The albedo values
of asteroids vary according to the superficial mineralogical com-
position (taxonomic complex) and the object’s shape. Typical
values range from 0.06 ± 0.02 for low-albedo objects of C tax-
onomic complex up to 0.46 ± 0.06 for high-albedo objects of
V-type (Warner et al. 2009).

Combination of Eqs. (1) and (2) leads to a power law behav-
ior:

N(>D) = kD−b. (3)

The parameters were estimated by Stuart (2003), b = 1.95 (α =
b/5, admitting the same albedo for the entire sample) k = 1090,
and D is given in km. According to this expression and taking
into account the uncertainties of the measures, Stuart & Binzel
(2004) have estimated that there may exist 1090 ± 180 objects
with diameters equal to, or greater than, 1 km (H = 17.8).

2. Nonextensive statistics

In order to model the accumulated distribution of asteroid pe-
riods and diameters, we have applied results from the Tsallis
nonextensive statistics. This choice comes from the observa-
tional evidence that astrophysical systems are somehow re-
lated to nonextensive behavior. It is known that systems with
long-range interactions (typically gravitational systems) are not
properly described by Boltzmann-Gibbs statistical mechanics
(Landsberg 1990). During the past two decades the nonextensive
statistical mechanics have been continuously developed, which
is a generalization of the Boltzmann-Gibbs statistical mechan-
ics. Tsallis proposed in 1988 (Tsallis 1988) a generalization of
the entropy,

S q = k
1 −∑W

i pq
i

q − 1
, (4)

where pi is the probability of the i-th microscopical state, W
is the number of states, k is a constant (Boltzmann’s constant)
and q is the entropic index. The Boltzmann-Gibbs entropy S 1 =
−k
∑W

i pi ln pi is recovered if q → 1. It was soon realized that
the nonextensive statistical mechanics could be successfully ap-
plied to self-gravitating systems: Plastino & Plastino (1993)
found a possible solution to the problem of a self-gravitating
system with total mass, total energy, and total entropy simultane-
ously finite, within a nonextensive framework. Many examples
of nonextensivity in astrophysical systems may be found. We
list some instances. Nonextensivity was observed in the analy-
sis of magnetic field at distant heliosphere associated to the so-
lar wind observed by Voyager 1 and 2 (Burlaga & Viñas 2005;

Burlaga & Ness 2009, 2010). The distribution of stellar rota-
tional velocities in the Pleiades open cluster was found to be sat-
isfactorily modeled by a q-Maxwellian distribution (Soares et al.
2006). The problem of Jeans gravitational instability was consid-
ered according to nonextensive kinetic theory (Lima et al. 2002).
Nonextensive statistical mechanics was also used to describe
galaxy clustering processes (Wuensche et al. 2004) and tem-
perature fluctuation of the cosmic background radiation (Bernui
et al. 2006, 2007). Fluxes of cosmic rays can be accurately de-
scribed by distributions that emerge from nonextensive statistical
mechanics (Tsallis et al. 2003). A list of more instances of ap-
plications of nonextensive statistical mechanics in astrophysical
systems may be found in Tsallis (2009).

It is important to mention that the index q has a physical in-
terpretation – it expresses the degree of nonextensivity – and for
some systems it can be determined a priori (based on dynamical
properties). Indeed, a nonextensive system is characterized by a
q-triplet and not just by a single q (additional information can be
found in Tsallis 2009). This triplet was already obtained in an
astrophysical system (Burlaga & Vinhas 2005; Burlaga & Ness
2009, 2010).

Maximization of S q under proper constraints leads to dis-
tributions that are generalizations of those that appear within
the Boltzmann-Gibbs context. For instance, if it is required
that the (generalized) energy of the system is constant (Curado
& Tsallis 1991), the probability distribution that emerges is a
q-exponential,

p(x) ∝ expq(−βqx), (5)

βq is the Lagrange multiplier (not to confound with β of Eq. (1)).
The q-exponential function is defined as (Tsallis 1994)

expq x = [1 + (1 − q)x]
1

1−q
+ . (6)

The symbol [a]+ means that [a] = a if a > 0 and [a] = 0 if a ≤ 0.
The q-exponential is a generalization of the exponential func-
tion, which is recovered if q → 1. If the constraint imposes that
the (generalized) variance of the distribution is constant, then
the distribution that maximizes S q is a q-Gaussian (Tsallis et al.
1995; Prato & Tsallis 1999),

p(x) ∝ expq(−βqx2). (7)

The q-Gaussian recovers the usual Gaussian at q = 1, and partic-
ular values of the entropic index q turn p(x) into various known
distributions, such as the Lorentz distribution, uniform distribu-
tion, Dirac’s delta (see Tsallis et al. 1995; and Prato & Tsallis
1999, for details).

The Lagrange parameter βq also has a precise physical mean-
ing. Within the statistical mechanics context, the Lagrange pa-
rameter βq in Eq. (5) is related to the inverse of the temperature
(β1 = 1/(kT ) if q = 1), and in Eq. (7) it is related to the in-
verse of the variance (β1 = 1/(2σ2) in normal diffusion, σ2 is
the variance). Generally speaking, the inverse of the Lagrange
parameters are associated to the finiteness of the first or second
moments of the distribution.

Inverse cumulative distributions of the family of the
q-exponentials are usually, and conveniently, graphically rep-
resented by means of log-log plots, and Fig. 1 shows a gen-
eral instance for the function N≥(x) = M expq(−βqxγ). γ is a
general parameter that recovers the q-exponential (γ = 1), the
q-Gaussian (γ = 2), and in a generalized scheme, it may assume
other values, i.e. it may represent other distributions. The tails of
q-exponentials are power laws (expq(−βqx) ∼ [(q − 1)βqx]1/(1−q)
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Fig. 1. Inverse cumulative distribution of a generalized q-exponential,
N≥(x) = M expq(−βqxγ). γ = 1 is a q-exponential, γ = 2 is a
q-Gaussian, M is the size of the sample. Values of the parameters for
this particular instance are q = 1.5, βq = 0.1 and M = 104. The tran-
sition point (x∗)γ given by Eq. (8) is indicated. Dashed curve (red on-
line) is an ordinary (q = 1) exponential with β1 = 0.1 and M = 104.
Evidently, the tail behavior is entirely different from both curves.

for x 
 1 and q > 1) and therefore the slope of the asymptotical
power law regime in a log-log plot leads to the determination of
the parameter q (slope = γ/(1 − q) for general γ not necessarily
equal to one). For low values of the independent variable x (we
are assuming x > 0) this graphical representation displays a re-
gion that appears to be quasi-flat in this log-log plot; of course
it is not flat, once the function is monotonically decreasing by
construction. We call this region “quasi-flat” to distinguish it
from the asymptotical power law region. Figure 1 shows the in-
tersection of two straight lines that represent the two regimes.
The intersection is the transition point between the regimes (the
crossover), and it is given by

x∗ =
1

[
(q − 1)βq

] 1
γ

· (8)

Figure 1 also displays an ordinary (q = 1) exponential, for com-
parison. Exponentials of negative arguments decay vary fast,
and when represented in log-log plots this feature becomes
clear, once the exponential asymptotically presents slope→ −∞.
Coherently Eq. (8) gives x∗ → ∞ for q = 1, indicating that there
is no crossover of an exponential to a power law regime.

We have found that the distribution of diameters of NEAs
follows a q-exponential and the observed rotation periods of all
asteroids, regardless of their diameters, mineralogical composi-
tion, or region of the SS, are well approximated by a q-Gaussian.
We investigated two samples from databases of different years to
verify the effect of the observational bias.

3. Observational data

One important problem in the evaluation of distributions of rota-
tion periods and diameters of asteroids (and of course the same
applies for other observables) is that the data are possibly in-
fluenced by observational bias. In order to take this effect into
account, we considered samples from databases of two different
years: 2005 and 2010 for rotation periods, and 2001 and 2010
for asteroid diameters.

Two versions of the lightcurve derived data, available at the
Planetary Database System (PDS), were used: version 7 (V7),
with 1971 periods, and version 11 (V11), with 4310 periods
(Harris et al. 2005, 2010). The periods are classified according to
a quality code of the reliability of the estimated period, defined
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Fig. 2. Decreasing cumulative distribution of periods of V7 (green dots
on line) and V11 (black dots online) of PDS (NASA) with Rel ≥ 2,
and superposed q-Gaussians (N≥(p) = M expq(−βq p2)). V7: q = 2.0,
βq = 0.0161 h−2, M = 1621; V11: q = 2.6, βq = 0.025 h−2, M = 3567.
Fittings of the periods of V7 for P > 50 h are poor. This does not happen
with V11, and it possibly indicates a better accuracy of the data. Dashed
(violet online) and dot-dashed (magenta online) lines are normal (q = 1)
Gaussians, with β1 = 0.0161 h−2, M = 1621, and β1 = 0.025 h−2,
M = 3567.

by Harris & Young (1983). We used periods with Rel ≥ 2 (Rel
for reliability) that means they are accurate to ≈20%, which re-
sulted in 1621 entries for the V7 and 3567 asteroids for the V11.
Cross-checking the V11 sample with a compilation of taxonomic
classifications, also available at PDS, revealed that about 40%
(1487) of these asteroids have approximately known mineralog-
ical composition. The asteroids were separated into three main
classes: C , S, and X complexes, following the SMASS II system
of Bus & Binzel (2002), with 503, 663, and 321 objects, respec-
tively. The diameters of these subsamples were calculated with
Eq. (2) with the absolute magnitude H available from MPCORB
– Minor Planet Center Orbit Database (MPC 2010).

We also used two versions of the compilation of absolute
magnitudes H, namely that of Oct., 2001, with 1649 NEAs (sim-
ilar to Stuart’s 2001, procedure) and Oct., 2010, with 7078 ob-
jects (MPC 2010). We adopted pV = 0.14 ± 0.02 for the NEAs
population albedo. This value was estimated by Stuart & Binzel
(2004) and it takes into account the great variety of taxonomic
types that are found in the NEAs (Binzel et al. 2004). In order
to estimate the validity of the diameters estimated by Eq. (2), we
considered the diameters of 101 asteroids obtained from Spitzer
Space Telescope data (Trilling et al. 2010). This resulted in an
error of about 20%. We considered that this value, though not
small, is reasonable for the purposes of our study.

4. Distribution of rotation periods

Figure 2 shows the decreasing cumulative distribution of pe-
riods of V7 and V11, and superposed q-Gaussians (N≥(p) =
M expq(−βq p2)) and obviously, these functions quite satisfacto-
rily describe almost all data with q = 2.0 ± 0.1, βq = 0.016 ±
0.001 h−2 and M = 1621 (M is the number of objects) for V7,
and q = 2.6 ± 0.2, βq = 0.025 ± 0.002 h−2 and M = 3567
for V11. Parameters were found by a nonlinear leasts squares
method. Figure 2 also presents two ordinary Gaussians, and ev-
idently, these q = 1 distributions are completely unable to rep-
resent the data. The confidence level for both fits is 95%, ac-
cording to an χ2 test. This suggests that the distribution does
not depend on (i) the diameters, (ii) the mineralogical composi-
tion, or (iii) the region of the SS in which the object is found.
The latter is particularly important once the sample includes

A158, page 3 of 5

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117767&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117767&pdf_id=2


A&A 539, A158 (2012)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p (h)

10
0

10
1

10
2

10
3

10
4

N
≥(x

)
All
S
C
X

0 50 100
0

2000

4000

Fig. 3. Log-log plot of the decreasing cumulative distribution of periods
of 3567 asteroids (dots) with Rel ≥ 2 taken from the PDS (NASA)
and a q-Gaussian distribution (N≥(p) = M expq(−βq p2)) (solid line),
with q = 2.6, βq = 0.025 h−2, M = 3567. The other curves are 663
S-complex asteroids (diamonds, blue online), 503 C-complex asteroids
(squares, green online), 321 X-complex asteroids (triangles, magenta
online). Inset shows the 3567 asteroids and the q-Gaussian in a linear-
linear plot.

NEAs, trans-Neptunian objects (TNO), asteroids from the main
belt (MBA), Jupiter trojans (JT) and dwarf planets such as Ceres
and Pluto. The values of the entropic indexes (q = 2.0 for V7
and q = 2.6 for V11) – rather distant from unity, that is, distant
from the Maxwellian distribution – may indicate that long-range
interactions play an essential role in the distribution of rotation
periods. According to Eq. (8) (with x∗ ≡ p∗, γ = 2), the transi-
tion point is p∗ = 7.91±0.01 h ( f ∼ 3 d−1) for the data of V7, and
p∗ = 5.00 ± 0.02 h ( f ∼ 5 d−1) for the data of V11. The transi-
tion points for both samples differ from the critical period of the
spin barrier, and therefore the transition is not a consequence of
physical processes. Warner & Harris (2010) have demonstrated
that the periods are more accurately determined for objects with
periods p ≤ 8 h and light curve amplitudes A ≥ 0.3 mag, so we
conclude that the difference between the transition points of the
two versions is caused by observational bias.

We separately considered the taxonomic complexes C, S, and
X (V11), shown in Fig. 3, and found that all of them are properly
described by q-Gaussians within 95% of confidence level (q =
2.6 ± 0.2 and βq = 0.021 ± 0.002 h−2 for S, q = 2.0 ± 0.1 and
βq = 0.015± 0.001 h−2 for C and q = 2.0± 0.1 and βq = 0.010±
0.007 h−2 for X; fitted curves are not indicated in Fig. 3). The
difference between the parameters for each complex is related
to the size of the sample, and they are statistically similar. The
fittings for the C and X complexes can be improved if we admit
that the number of objects are 10% higher than that found in
the sample. The transition point p∗ decreases from V7 to V11,
and this may be an indication that the fraction of fast rotators
( f ≥ 5 d−1) may still be underestimated.

5. Distribution of near-Earth asteroid diameters

We have found that the decreasing cumulative distribution of
diameters of NEAs can be fitted by q-exponentials. The fitting
of a q-exponential to the diameters of 7078 NEAs (N≥(D) =
M expq(−βqD)), shown in Fig. 4, is quite good for the entire
range of the data, with a confidence level of 95%: q = 1.3 ± 0.1
and βq = 3.0±0.2 km−1 (found with the nonlinear leasts squares
method). This distribution, however, is influenced by observa-
tional bias. The q-exponential distribution can be used to deter-
mine the point at which the sample is supposed to be complete.
Figure 4 compares q-exponentials that fit the observed diameter
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Fig. 4. Decreasing cumulative distribution of diameters of known
NEAs in 2001 (1649 objects, green dots) and in 2010 (7078 ob-
jects, black dots). Solid lines are best fits of q-exponentials (N≥(D) =
M expq(−βqD)). Blue line (2001): q = 1.3, βq = 1.5 km−1, M = 1649,
red line (2010): q = 1.3, βq = 3 km−1, M = 7078. Normal exponen-
tials (q = 1) are displayed in the main panel for comparison (dashed
violet, with β1 = 1.5 km−1, M = 1649, and dot-dashed magenta, with
β1 = 3 km−1, M = 7078).

distribution of known NEAs in October 2001 and October 2010.
The observed diameter distribution of the 2001 database follows
a q-exponential with q = 1.3 ± 0.1 and βq = 1.5 ± 0.1 km−1 and
the same confidence level. The figure also shows normal (q = 1)
exponentials, and their inadequacy can be promptly verified in
the representation of the whole data range.

Once the value of q is the same for the 2001 and 2010 sam-
ples, we may argue that this parameter is not influenced by the
bias in this case, and it reflects real physical processes. Both
curves are practically identical in the power-law region, and the
point of transition to the quasi-flat region differs, as expressed by
the different values of βq. The value of q = 1.3 (different from
one) is an indication that not only collisional processes are in-
volved in forming these objects. Other mechanisms may also be
present: the YORP effect may lead to the decrease of the rota-
tion period up to the point of rupture. This fragmentation process
may yield the formation of binary or multiple systems. About
(15 ± 4)% of NEAs with D ≥ 0.3 km and rotation periods be-
tween 2 and 3 h possibly are binary systems (Pravec et al. 2007).
The transition points according to Eq. (8) (with x∗ ≡ D∗, γ = 1)
are D∗ = 2.22±0.05 km (2001), and D∗ = 1.11±0.05 km (2010).

The sample is complete up to the upper limit of these in-
tervals, 2.22 + 0.05 = 2.27 km (H = 16) for 2001 basis and
1.11 + 0.05 = 1.16 km (H = 17.5) for 2010 basis. The number
of NEA with D ≥ 2.27 km is virtually the same for the sample of
2001 and 2010 (166±8 objects). This is confirmation of the sam-
ple completeness up to H ∼ 15 (Jedicke et al. 2002), and the ex-
tension of this limit up to H ∼ 16 (Harris 2008). Once there has
been an increase in the efficiency of detection and in the number
of surveys (Stokes et al. 2002; Larson 2007), we conclude that
the parameter βq indicates the limit of sample completeness. For
D ≥ 1.16 km, the 2010 data are best described by a power-law.
We found for Eq. (3), k = 994 ± 30 and b = 2.24 ± 0.01, with
correlation coefficient R2 = 0.987. The value of b corresponds
to α = 0.448 ± 0.002 in Eq. (1), which is a reasonable value
compared to the slope of 0.44 found by Zavodny et al. (2008).
The value of q may be found from b using q = 1 + 1/b, thus
q = 1.446 ± 0.001, which is within the interval found in the
whole sample. According to the distribution we found 994 ± 30
asteroids with D ≥ 1 km (H ≤ 17.7), in a close agreement with
Mainzer et al. (2011). Distribution analyses of the MBA and
TNO diameters according to lines similar to those used in this
work are welcome.
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