Nuclear modification factors of ϕ mesons in $d + Au$, $Cu + Cu$, and $Au + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV

5055-2813/2011/83(2)/024909(10) ©2011 American Physical Society
The PHENIX experiment at the Relativistic Heavy Ion Collider has performed systematic measurements of the \(\phi \) meson production in the \(K^+K^- \) decay channel at midrapidity in \(p+p \), \(d+Au \), Cu + Cu, and Au + Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV. Results are presented on the \(\phi \) invariant yield and the nuclear modification factor \(R_{AA} \) for \(Au + Au \) and \(Cu + Cu \), and \(R_{dA} \) for \(d + Au \) collisions, studied as a function of transverse momentum (\(1 < p_T < 7 \) GeV/c) and centrality. In central and midcentral \(Au + Au \) collisions, the \(R_{AA} \) of \(\phi \) exhibits a suppression relative to expectations from binary scaled \(p + p \) results. The amount of suppression is smaller than that of the \(\pi^0 \) and the \(\eta \) in the intermediate \(p_T \) range (2–5 GeV/c), whereas, at higher \(p_T \), the \(\phi \), \(\pi^0 \), and \(\eta \) show similar suppression. The baryon (proton and antiproton) excess observed in central \(Au + Au \) collisions at intermediate \(p_T \) is not observed for the \(\phi \) meson despite the similar masses of the proton and the \(\phi \). This suggests that the excess is linked to the number of valence quarks in the hadron rather than its mass. The difference gradually disappears with decreasing centrality, and, for peripheral collisions, the \(R_{AA} \) values for both particle species are consistent with binary scaling. Cu + Cu collisions show the same yield and suppression as Au + Au collisions for the same number of \(N_{part} \). The \(R_{dA} \) of \(\phi \) shows no evidence for cold nuclear effects within uncertainties.

DOI: 10.1103/PhysRevC.83.024909

PACS number(s): 21.65.Jk, 25.75.Dw

I. INTRODUCTION

Measurements of hadron spectra from \(p + p \) and nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) provide a means to study the mechanisms of particle production and the properties of the medium formed in relativistic heavy ion collisions. At low transverse momentum \(p_T < 2 \) GeV/c, where the bulk of particles are produced, hadron production is governed by soft processes characterized by low-momentum transfer. The particle yields and the evolution of the interacting system are successfully described within the framework of thermal and hydrodynamical models [1–5].

At high transverse momentum \(p_T > 5 \) GeV/c, hard scattering processes become the dominant contribution. Because of the large momentum transfer involved, the parton-parton scattering cross sections are amenable to perturbative QCD (pQCD) description, and hadron production can be calculated by using initial-state parton distribution functions and final-state fragmentation functions. Modifications to the hadron yields are expected in nucleus-nucleus collisions because of the interaction of the scattered parton with the hot and dense medium formed [6–8]. In the absence of interaction with the medium, the hard scatterings and the resulting hadron yields should scale with the number of binary nucleon-nucleon collisions (\(N_{coll} \)), whereas, in the medium, the yields are suppressed (jet quenching [9]) because of parton energy loss through gluon bremsstrahlung. High-\(p_T \) hadron suppression consistent with this scenario has been discovered in Au + Au collisions at RHIC [10–12]. The same suppression by a factor of \(\sim 5 \) is observed for \(\pi^0 \) and \(\eta \) production, whereas, direct photons that do not interact with the medium, follow the expected binary scaling [13]. Single electrons that originate from the semileptonic decays of mesons that contain heavy quarks

1Deceased.

1PHENIX spokesperson: jacak@skipper.physics.sunysb.edu
statistics of the analyzed data samples, allow for the extension of the \(p_T \) range of the measurements up to \(p_T = 7.0 \) GeV/c in all collision systems. The higher \(p_T \) reach and the higher precision of the data allow for sharper conclusions with respect to earlier results [28,30]. The Cu + Cu measurements are complementary to those on Au + Au and allow the study of nuclear effects with different nuclear overlap geometry for the same \(N_{\text{part}} \) and with smaller \(N_{\text{part}} \) uncertainties for \(N_{\text{part}} < 100 \).

The measurement of the \(\phi \) meson production in \(d + Au \) collisions is important for understanding cold nuclear matter effects that are of interest by themselves and are also essential for the interpretation of heavy ion collisions. As shown in Ref. [33], in the intermediate \(p_T \) range, charged pions practically are not enhanced in comparison to the binary scaled \(p + p \) yield, whereas, protons and antiprotons exhibit some enhancement of \(\sim 30\% \) in the most central collisions. The mechanism of multiple soft rescattering of partons in the initial state, which is usually invoked as the origin of the Cronin effect, does not explain this meson-baryon difference. One possible explanation comes from recombination models [34] in which baryons gain higher transverse momentum from recombination of three quarks in the final state in comparison to mesons consisting of only two quarks. Measurement of the Cronin effect for the \(\phi \) mesons can provide additional constraints for the models that try to explain these cold nuclear effects.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

We report on the measurements of \(\phi \) mesons in Au + Au collisions in the \(K^{+}K^{-} \) decay channel in \(p + p, d + Au, Cu + Cu, \) and Au + Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV by using data collected by the PHENIX experiment during the 2004, 2005, and 2008 physics runs. A detailed description of the PHENIX detector can be found elsewhere [35]. The measurements were performed by using the two PHENIX central arms, each covering 90° in azimuth at midrapidity (\(|\eta| < 0.35 \)). The tracking of charged particles and the measurement of their momentum with typical resolution of \(0.7\% \pm 1.1\% p/\text{GeV/c} \) are performed by using the drift chambers and the first layer of the pad chambers (PCs). To reduce the background at high \(p_T \), tracks are required to have a matching confirmation in the third layer of the PC or the electromagnetic calorimeter. Kaons are identified by using the time-of-flight (TOF) detector, which covers approximately 1/3 of the acceptance in one of the central arms. With a time resolution of \(\sim 115 \) ps, the TOF allows for clear \(\pi/K \) separation in the range of transverse momentum from 0.3 GeV/c to 2.2 GeV/c by using a \(2\sigma p_T \)-dependent mass-squared selection cut as described in Ref. [28].

The beam-beam counters (BBCs) and zero-degree calorimeters (ZDCs) are dedicated subsystems that determine the collision vertex along the beam axis (\(z_{\text{beam}} \)) and the event centrality and also provide the minimum bias interaction trigger. Events are categorized into centrality classes by using two-dimensional cuts in the space of BBC charge versus ZDC energy [36] for Au + Au collisions or only by the amount of charge deposited in the BBC [12,37] for \(d + Au \) and \(Cu + Cu \) collisions.

In any particular event, one cannot distinguish between kaons from \(\phi \) decays and other kaons, so the \(\phi \) meson yields are
measured on a statistical basis. In each event, all tracks of opposite charge that pass the selection criteria are paired to form the invariant-mass distribution. This distribution contains both the signal (S) and an inherent combinatorial background (B). To maximize the statistical significance and the reach of the measurements, we use three different track selection techniques: no particle identification (PID) in which all tracks are assigned the kaon mass, but no TOF information is used, and one kaon PID or two kaons PID in which one or both tracks are identified as kaons in the TOF.

Table I lists, for each collision system and for each analysis technique, the number of analyzed minimum bias events in the vertex range $|\phi_{\text{vtx}}| < 30$ cm, the accessible p_T range, and the range of the signal-to-background (SB) ratio.

![FIG. 1. (Color online) Invariant-mass distributions obtained with the two kaons PID and no PID methods in Au + Au collisions after subtraction of the combinatorial background estimated by using the event-mixing technique. The plot on the top corresponds to the range 2 < p_T (GeV/c) < 3. The no PID spectrum is fit to the sum of a Breit-Wigner function convolved with a Gaussian function to account for the background.]

![FIG. 1. (Color online) Invariant-mass distributions obtained with the two kaons PID and no PID methods in Au + Au collisions after subtraction of the combinatorial background estimated by using the event-mixing technique. The plot on the top corresponds to the range 2 < p_T (GeV/c) < 3. The no PID spectrum is fit to the sum of a Breit-Wigner function convolved with a Gaussian function to account for the background.]

describe the background, a second-order polynomial was used in most analyses, except for the Au + Au no PID case where a third-order polynomial was used. Figure 1 shows an example of the fits.

The ϕ meson invariant yield in a given centrality and p_T bin is obtained by

$$
\frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} = \frac{N_\phi C_{\text{bias}}}{2\pi p_T N_{\text{evt}} \epsilon_{\text{rec}} \epsilon_{\text{embed}} B_{KK} \Delta p_T \Delta y},
$$

where N_{evt} is the number of analyzed events in the centrality bin under consideration, ϵ_{rec} corrects for the limited acceptance of the detector and for the ϕ meson reconstruction efficiency, ϵ_{embed} accounts for the losses in reconstruction efficiency caused by detector occupancy in heavy ion collisions, B_{KK} is the branching ratio for $\phi \rightarrow K^+ K^-$ in vacuum, N_ϕ is the raw ϕ yield measured in the given bin, $C_{\text{bias}} = \epsilon_{\text{MB}} / \epsilon_{\phi}$, where ϵ_{MB} and ϵ_{ϕ} are the BBC-trigger efficiencies for minimum bias and ϕ events, respectively. This C_{bias} correction is equal to 0.69 for $p + p$ [39] and varies from 0.92 to 0.85 as we go from peripheral to central $d + Au$ collisions [40]. In Au + Au and Cu + Cu collisions, the minimum bias trigger...
obtained with one kaon PID or two kaon PID methods are subsamples of the no PID distribution. Therefore, results obtained with different methods cannot be averaged directly. In the final spectra, the transition between different techniques occurs at \(p_T = 1.3 \text{ GeV/c} \) in \(p + p \), \(p_T = 2.2 \text{ GeV/c} \) in \(Au + Au \), and at \(p_T = 3.2 \text{ GeV/c} \) in \(Cu + Cu \) collisions to obtain the smallest combined statistical and systematical uncertainties for the points.

Systematic uncertainties on the \(\phi \) invariant yield are grouped into three categories: type A (point-to-point uncorrelated), which can move each point independently; type B (point-to-point \(p_T \) correlated), which can move points coherently, but not necessarily by the same relative amount; type C (global), which move all points by the same relative amount. The main contribution to the systematic errors of type A is the uncertainty in the raw yield extraction \(N_\phi \) of 6%–25%. The error of type B is dominated by uncertainties in reconstruction efficiency \(\epsilon_{\text{rec}} \) of 5%–9%, embedding corrections \(\epsilon_{\text{embed}} \) of 1%–7%, and momentum scale of 1%–5%. The main contributions to the type C errors are the uncertainties in normalization for the \(p + p \) (\(d + Au \)) cross section equal to 9.7% (7.8%) and in branching ratio \(B_{KK} \) of 1.2%.

III. RESULTS AND DISCUSSION

Figure 3 shows the fully corrected \(\phi \) invariant yield as a function of \(p_T \) measured in \(p + p \), \(d + Au \), \(Cu + Cu \), and \(Au + Au \) collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \). The spectra are scaled by arbitrary factors for clarity and are fitted to exponential and Tsallisian functions shown by the dashed and solid lines, respectively. We used the Tsallis function adapted to the form \([38]\)

\[
\frac{1}{2\pi} \frac{d^2N}{dy dp_T} = \frac{1}{2\pi} \frac{dN}{dy} \frac{(n - 1)(n - 2)}{(nT + m_\phi(n - 1))(nT + m_\phi)} \times \left(\frac{m_T}{nT + m_\phi} \right)^{-n},
\]

(2)

where \(\frac{dN}{dy} \), \(n \), and \(T \) are free parameters, \(m_T = \sqrt{p_T^2 + m_\phi^2} \), and \(m_\phi \) is the mass of the \(\phi \) meson. The spectral shapes for all collision systems and centralities are well described by the Tsallis function, while the exponential fits underestimate the \(\phi \) meson yields at high \(p_T \) where the spectra begin to exhibit the power-law behavior expected for particles produced in hard scattering processes. For \(p + p \) collisions, the departure from exponential shape occurs at \(\approx 4 \text{ GeV/c} \). For all centralities in \(Au + Au \) collisions, the departure occurs at somewhat larger \(p_T \), which suggests a larger contribution of soft processes to the \(\phi \) meson production up to 4 to 5 GeV/c. Such behavior of the spectral shapes is in agreement with recombination models \([22, 24, 45, 47]\) predicting \(p_T \) spectra for different hadronic species based on the number and flavor of their valence quarks. At low transverse momentum, we do not observe a large change in the slopes of the spectra from central to peripheral collisions, supporting the expectation for smaller radial flow of \(\phi \) mesons compared to other hadrons.

The large \(p_T \) reach of the results presented here allows for the study of medium-induced effects on \(\phi \) meson production
at intermediate and high p_T by using the nuclear modification factor:

$$R_{AB} = dN_{AB}/(\langle N_{\text{coll}} \rangle \times dN_{pp}), \quad (3)$$

where dN_{AB} (dN_{pp}) is the differential ϕ yield in nucleus-nucleus ($p + p$) collisions and $\langle N_{\text{coll}} \rangle$ is the average number of nuclear collisions in the centrality bin under consideration [11,12,33]. The latter is determined solely by the density distribution of the nucleons in the nuclei A and B and by the impact parameter and is calculated using the Glauber formalism [48]. Deviation of R_{AB} from unity quantifies the degree of departure of the $A + B$ yields from a superposition of incoherent nucleon-nucleon collisions.

Figure 4 shows a comparison of the R_{AA} for ϕ and π^0 from Ref. [50], proton and kaon from Ref. [33], and η from Ref. [51], all measured in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The ϕ meson exhibits a different suppression pattern than that of lighter nonstrange mesons and baryons. For central collisions (top panel), the ϕ's R_{AA} shows less suppression than π^0 and η in the intermediate p_T range of $2 < p_T$ (GeV/c) < 5. At higher p_T values, $p_T > 5$ GeV/c, the ϕ's R_{AA} approaches and becomes comparable to the π^0 and η R_{AA}. These two features remain true for all centralities up to the most peripheral collisions as displayed in the bottom panel of Fig. 4 (see also Fig. 5). The panel shows that the π^0 is slightly suppressed (at the level of $\sim 20\%$) in peripheral Au + Au collisions, whereas, the ϕ is not suppressed. The kaon data cover only a very limited range at low p_T, but in this range, they seem to follow the R_{AA} trend of the ϕ better than that of the π^0 and η for central Au + Au collisions. The comparison with baryons, represented in Fig. 4 by the protons and antiprotons, shows a different pattern. For central collisions, the protons show no suppression but rather an enhancement at $p_T > 1.5$ GeV/c, whereas, the ϕ mesons are suppressed. This difference between ϕ mesons and protons gradually disappears with decreasing centrality, and for the most peripheral collisions, the R_{AA} of ϕ and (anti)protons are very similar as demonstrated in the bottom panel.

The results presented here are in agreement with the previous PHENIX results [28], which were based on the
which show that, in Au+Au collisions, the latter. The use of different analysis techniques and the uncertainty related to the $p + p$ reference normalization is not shown.

2002 RHIC run within the relatively larger uncertainties of the latter. The use of different analysis techniques and the larger Au+Au data sample of the 2004 run resulted in a higher precision and a larger p_T reach of R_{AA} that allowed for unveiling the different behavior of the ϕ meson (i.e., less suppression than π^0 but more suppression than baryons) in the intermediate p_T range. Our results differ from the ones recently published by the STAR Collaboration [29,30], which show that, in Au+Au collisions, R_{AA} is consistent with binary scaling in the intermediate p_T region, whereas, R_{CT} shows considerable suppression. This difference is traced down to the almost factor of 2 higher invariant p_T yield in the STAR experiment [29,30] in Au+Au collisions, compared to our results presented in Fig. 3, whereas, in $p + p$, both experiments are in reasonably good agreement.

Figure 5 compares the R_{AA} of ϕ in Au+Au and Cu+Cu in two centrality bins, which approximately correspond to the same number of participants in the two systems. Figure 6 shows the R_{AA} of the ϕ integrated for $p_T > 2.2$ GeV/c in Cu+Cu and Au+Au collisions versus N_{part}. Under these conditions, there is no difference in the R_{AA} of ϕ between the two systems, which indicates that the level of the suppression, when averaged over the azimuthal angle, scales with the average size of the nuclear overlap, regardless of the details of its shape. This behavior has been observed in other measurements, such as the R_{AA} of the π^0. The π^0 suppression data in Au+Au and Cu+Cu taken from Refs. [12,50] are also shown in Fig. 5 for comparison. The similarity of the R_{AA} of ϕ in the two colliding systems implies that the features discussed previously for Au+Au in the context of Fig. 4, namely, that the ϕ exhibits an intermediate suppression between pions and baryons, also remain valid in the Cu+Cu system.

Our data disfavor radial flow as the dominant source for the particle species dependence of the suppression factors at intermediate p_T because the proton and ϕ R_{AA} factors differ by a factor of ~ 2, despite their similar mass ($m_p \simeq m_\phi$), whereas, the kaon and ϕ show similar R_{AA} factors, although their masses differ by almost a factor of 2 ($m_\phi \simeq 2m_K$).

Recombination models [22-24,45-47] qualitatively explain the larger yield of baryons compared to mesons at intermediate p_T by the higher gain in p_T that comes from recombination of three quarks for baryons rather than two quarks for mesons. The same framework can be used to interpret the difference in suppression factors for π^0 and ϕ mesons. For π^0 production in the Hwa and Yang model [47], the contribution from the recombination of thermal (T) and shower (S) partons becomes comparable to that of the recombination of TT partons already at $p_T \approx 3$ GeV/c. For the ϕ, however, the strangeness enhancement preferentially feeds the thermal partons. Soft processes dominate over hard processes in a wider p_T range, and consequently, the TT component remains dominant up to $p_T \approx 6$ GeV/c for the ϕ production [46]. The R_{AA} of ϕ becomes similar to that for π^0 at $p_T > 5$ to 6 GeV/c where the contribution from fragmentation partons becomes significant for both particles. It is interesting to note that the η closely follows the π^0 despite its sizable ($\sim 50\%$) strangeness content [52].

Cold nuclear matter effects can also contribute to the differences in hadron suppression factors in $A + A$ collisions. Figure 7 compares the R_{dA} for ϕ and π^0 from Ref. [49] and protons from Ref. [33] for central (top panel) and peripheral (bottom panel) $d + A$ collisions. For both centralities, the

![Figure 5](image-url)
FIG. 5. (Color online) (Top) R_{AA} versus p_T for ϕ and π^0 for 30%–40% centrality Au+Au and 0%–10% centrality Cu+Cu collisions. (Bottom) R_{AA} versus p_T for ϕ and π^0 for 40%–50% centrality Au+Au and 10%–20% centrality Cu+Cu collisions. Values for π^0 are from Refs. [12,50]. The uncertainty in the determination of $\langle N_{coll} \rangle$ is shown as a box on the left. The global uncertainty of $\sim 10\%$ related to the $p + p$ reference normalization is not shown.

![Figure 6](image-url)
FIG. 6. (Color online) R_{AA} for ϕ integrated at $p_T > 2.2$ GeV/c in Cu+Cu and Au+Au collisions versus N_{part}. The global uncertainty related to the $p + p$ reference normalization is shown as a box on the right.
The uncertainty in the determination of meson is suppressed, but this difference gradually disappears are enhanced with respect to binary scaling, whereas, the baryons shows that, in central Au $+\text{Au}$ collisions. For all centralities, the R_{dA} seems to follow the p_T range (2–5 GeV/c) usual for different centralities.

R_{dA} for ϕ and π^0 are similar, which indicates that cold nuclear effects are not responsible for the differences between ϕ and π^0 seen in Au + Au and Cu + Cu collisions. The proton’s R_{dA} exhibits an enhancement for $p_T = 2-4$ GeV/c, usually associated with the Cronin effect [53–58], whereas, the R_{dA} for ϕ indicates little or no enhancement. The lack of Cronin enhancement is also seen in the π^0 data [49] shown in Fig. 7 and has also been observed for other mesons in central and midcentral $d + \text{ Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV [33,59,60].

IV. SUMMARY AND CONCLUSIONS

We have measured ϕ meson production at midrapidity via the $K^+ K^-$ decay channel in $p + p$, $d + \text{Au}$, $\text{Cu} + \text{Cu}$, and $\text{Au} + \text{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV. Invariant p_T spectra and nuclear modification factors have been presented over the p_T range of $1 < p_T < 7$ GeV/c for different centralities.

The ϕ meson exhibits a different suppression pattern compared to lighter mesons (π^0 and η) and baryons (protons and antiprotons) in heavy ion collisions. For all centralities, the ϕ meson is less suppressed than π^0 and η in the intermediate p_T range (2–5 GeV/c), whereas, at higher p_T, ϕ, π^0, and η show similar suppression values. The available kaon R_{AA} data seem to follow the R_{AA} trend of the ϕ. The comparison with baryons shows that, in central Au + Au collisions, the latter are enhanced with respect to binary scaling, whereas, the ϕ meson is suppressed, but this difference gradually disappears with decreasing centrality, and for peripheral collisions, the baryons and the ϕ meson have very similar R_{AA} values consistent with binary scaling.

The same features are observed in Cu + Cu collisions between the ϕ and π^0. The ϕ meson invariant p_T spectra in Au + Au and Cu + Cu collisions for similar N_{part} values exhibit similar shape and yield over the entire p_T range of the measurement within the statistical and systematic uncertainties. This indicates that the production and suppression of the ϕ meson, when averaged over the azimuthal angle, scales with the average size of the nuclear overlap region, regardless of the details of its shape.

Cold nuclear effects cannot account for the observed differences. For all centralities, the ϕ’s R_{dA} in $d + \text{Au}$ collisions is consistent with binary scaling in agreement with other mesons. No meson species dependence is observed in R_{dA} within uncertainties.

The observed features at intermediate p_T in Au + Au and Cu + Cu collisions are qualitatively consistent with quark recombination models [22–24,45–47], which are also supported by ϕ elliptic flow measurements [29,31]. The systematic set of measurements presented here provides further constraints for these models. The similarity between the suppression patterns of different mesons at high p_T favors the production of these mesons via jet fragmentation outside the hot and dense medium created in the collision. Complementary jet correlation measurements, which involve ϕ mesons as a trigger as well as extension of the kaon data to higher p_T would be desirable to provide further insight into the ϕ meson production mechanism.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Industry, Science and Technologies, Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation (Korea), Ministry of Education and Science,
Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

024909-10