GENERAL THEORY

Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–1182, 1184–1592]
H-theorem and irreversibility: [1593–1624]
Ehrenfest theorem, von Neumann equation: [3, 1625–1631]
Quantum statistics: [1632–1734]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1645, 1735–1823]
Langevin and Fokker-Planck equations: [1597, 1630, 1636, 1804, 1824–2202]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 2203–2218]
Poisson equation: [2219–2228]
Callen identity: [2229]
Ising transmissivity: [2230]
Classical equipartition principle: [2231–2233]
Connection with quantum uncertainty: [2234–2268]
Connection with Fisher information measure: [2269–2281]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 45, 50–52, 1706, 2282–2648]
Connection with general relativity, cosmology, dark energy, string theory: [2270, 2649–2729]
Connection with quantum groups and quantum mechanics: [2730–2774]
Connection with wavelets; Signal processing; EEG: [2775–2841]
Connection with quantum correlated many-body problems: [2842–2851]
Connection with the Gentile and the exclusion Haldane statistics: [2852–2855]
Connection with finite systems: [2856–2859]
Rigorous results (generalized entropy and thermostatistics): [2855–2890, 2896–2861]
Integral transformations (Hilhorst and Prato formulae): [1634, 2203, 2862–2864]

ONE-BODY SYSTEMS

Two-level system: [1, 2865]
Harmonic oscillator: [860, 868, 2860, 2865–2867]
Free particle: [2868]
Larmor precession: [1627]
Rigid rotator: [2863, 2869–2871]
Hydrogen and hydrogen-like atoms: [1029, 1031, 2872–2891]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 6347 articles from 12820 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [2203, 2231, 2862, 2892–2916]
Independent spin paramagnet, Landau magnetism: [2735, 2738–2741, 2917–2924]
Black-body radiation and photonic systems: [2925–2974]
\(d = 1 \) Ising ferromagnet: [2975–2979]
\(d \geq 2 \) Ising and other ferromagnets: [2230, 2980–3022]
Infinite-range Ising ferromagnet: [3023]
Potts ferromagnet, Molecular field approximation: [2229, 2997, 3024–3027]
Percolation: [3028–3030]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [3031–3086]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [1787, 2219, 2270, 3087–3215]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [2219, 3261–3264, 3275–3505]
Solar neutrinos; High energy physics: [3506–3671, 3673?–3927]
Ferrofluid-like materials, Lennard-Jones fluids: [3014, 3928–3949]
Solitons: [3950, 3951]
Plasma (electron velocity distribution, magnetohydrodynamics): [3952–4220, 4222–4315]
Glass, Spin-glass: [4316–4348]
Superfluid helium; Bose-Einstein condensation: [4349–4364]
Test of Boltzmann-Gibbs thermostatistics: [2653, 2944, 2945]
Cosmic rays; Elementary particles: [3906, 4365–4576]
Biological systems; Microemulsions; Liquid crystals: [4577–4667]
Stochastic resonance; Brownian motors: [4688–4703]
Connection with the Theory of perceptions: [16]
Connection with the Theory of finances: [6, 3276, 4689, 4690, 4692–4694, 4704–4863]
Consistent testing; Statistical inference; Theory of probabilities: [475–515, 1783, 4864–4901]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [1805, 3008, 5104–5389]
Neural and other networks: [4637, 4638, 5390–5491]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [2775–2780, 2789–2791, 2794–2797, 5492–5972]
Geophysics: [2796, 2797, 5555, 5973–6029]
Medicine; Tomography: [2798, 2803–2805, 5492, 5737, 6030–6080]
Symbolic dynamics, linguistics, philology, cognitive sciences, hydrology, ecology: [2324, 2326, 2354–2362, 5057, 6081–6206]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [425, 6207–6347]
References

[60] E.M.F. Curado, Condiciones para a existencia de estatisticas generalizadas, communicated at the XX Encontro Nacional de Física da Materia Condensada (10-14 June 1997, Caxambu, Brazil).
[118] M. Hotta, Bi-composability and generalized entropy composition with different \(q \) indices, preprint (1999) [cond-mat/9908236].
[139] A. Plastino and M.C. Rocca,
q-Gamow states as continuous linear functionals on analytical test functions,
preprint (2015), 1511.04010 [math.CA].

[140] A. Plastino, M.C. Rocca and D.J. Zamora,
q-Gamow states for intermediate energies,
preprint (2016), 1604.06910 [cond-mat.stat-mech].

[141] S. Abe and A.K. Rajagopal,
Nonadditive conditional entropy and its significance for local realism,

[142] C. Tsallis, S. Lloyd and M. Baranger,
Peres criterion for separability through nonextensive entropy,

[143] Y. Luo, T. Tian, L.H. Shao and Y. Li,
General monogamy of Tsallis-q entropy entanglement in multqubit systems,

[144] V. Perinova and A. Luks,
States of maximum polarization for a quantum light field and states of a maximum sensitivity in quantum interferometry,

[145] G. Jaeger,

[146] K. Ourabah, A.H. Hamici-Bendimerad and M. Tribeche,
Quantum entanglement and Kaniadakis entropy,

[147] K. Ourabah and M. Tribeche,
Quantum entanglement and temperature fluctuations,

[148] K. Ourabah, A.H. Hamici-Bendimerad and M. Tribeche,
Quantum Kaniadakis entropy under projective measurement,

[149] G.M. Bosky, S. Zozor, F. Holik, M. Portesi and P.W. Lamberti,
Comment on “Quantum Kaniadakis entropy under projective measurement”,

[150] R. Augusiak, J. Stasinska and P. Horodecki,
Beyond the standard entropic inequalities: Stronger scalar separability criteria and their applications,

[151] R. Augusiak and J. Stasinska,
Positive maps, majorization, entropic inequalities and detection of entanglement,

[152] M.L. Liang, B. Yuan and J.N. Zhang,
Tsallis entropies and entanglement of superposed trio coherent states,

[153] F. Pennini, A. Plastino and M.C. Rocca,

[154] D.G. Medranda and A. Luis,
Sub-Poissonian and anti-bunching criteria via majorization of statistics,

[155] A.M. Kowalski and A. Plastino,
Bandt-Pompe-Tsallis quantifier and quantum-classical transition,
Physica A 388, 4061-4067 (2009).

[156] F. Pennini and A. Plastino,
Fluctuations, entropic quantifiers and classical-quantum transition,

Separability of a family of one parameter W and Greenberger-Horne-Zeilinger multiqubit states using Abe-Rajagopal q-conditional entropy approach,

[158] Sudha, A.R. Usha Devi and A.K. Rajagopal,
Entropic characterization of separability in Gaussian states,

[160] M.V. Jankovic,
Quantum Tsallis entropy and projective measurement, preprint (2009), 0904.3794 [physics.data-an].

[161] A.E. Rastegin,
Uncertainty and certainty relations for successive projective measurements of a qubit in terms of Tsallis’ entropies,

[162] A.E. Rastegin,
Notes on use of generalized entropies in counting,
Graphs and Combinatorics 32 (6), 2625-2641 (2016).

[163] A.E. Rastegin,
Renyi formulation of entanglement criteria for continuous variables,

[164] M.V. Jankovic and N. Georgijevic,
Applications of probabilistic model based on joystick probability selector,
2014 International Joint Conference on Neural Networks, 1028-1035 (Beijing, China, July 6-11, 2014).

[165] R. Khordad and H.R. Rastegar Sedehi,
Application of different entropy formalisms in a neural network for novel word learning,

[281] Q.A. Wang, L. Nivanen, A. Le Mehaute and M. Pezeril, Note on Abe’s general pseudoadditivity for nonextensive systems, preprint (2001) [cond-mat/0111541].

Theorem behavior in quasi-stationary states of the HMF model, Physica A (University of Catania, 2008).

F.Z. Dogru, Y.M. Bulut and O. Arslan, Double reweighted estimators for the parameters of the multivariate t distribution, preprint (2017), arxiv 1707.01130

P. Sunehag, On a connection between entropy, extensive measurement and memoryless characterization, preprint (2007), 0710.4179 [physics.data-an].

G.P. Karev, Non-linearity and heterogeneity in modeling of population dynamics, Mathematical Biosciences (2014) (8 pages), in press. 178

[529] Y.J. Fan and H.X. Cao, Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information, Quantum Inf. Process 14, 4537-4555 (2015), doi: 10.1007/s11128-015-1126-6

[696] F. Topsoe, Interaction between truth and belief as the key to entropy and other quantities of statistical physics, preprint (2008), 0807.4337[math-ph].

[797] A. Rodriguez, V. Schwammle and C. Tsallis, Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as $N \to \infty$ limiting distributions, JSTAT P09006 (2008).

[809] S. Umarov and C. Tsallis, Limit distribution in the q-CLT for $q \geq 1$ can not have a compact support, preprint (2010), 1012.1814 [cond-mat.stat-mech].

C. Vignat and P.W. Lamberti, *Carinena orthogonal polynomials are Jacobi polynomials*, preprint (2009), 0902.0451 [math.CA].

Thermodynamic stabilities of the generalized Boltzmann entropies

M.A. Fuentes and A. Robledo,

U. Tirnakli, C. Tsallis and C. Beck,

R.M. Yulmetyev, N.A. Emelyanova and F.M. Gafarov,

S. Abe and A.K. Rajagopal,

A. Diaz-Ruelas, M.A. Fuentes and A. Robledo,

O. Afsar,

P. Grassberger,

J.A. Marsh, M.A. Fuentes, L.G. Moyano and C. Tsallis,

P. Sanchez-Moreno, J.S. Dehesa, A. Zarzo and A. Guerrero,

E.G.D. Cohen,

Nonextensive block entropy statistics of Cantor fractal sets

C. Tsallis and U. Tirnakli,

C. Tsallis,

A.I. Aptekarev, J.S. Dehesa, P. Sanchez-Moreno and D.N. Tulyakov,

J.S. Dehesa, A. Guerrero and P. Sanchez-Moreno,

E.G.D. Cohen,

M.A. Fuentes and A. Robledo,

O. Afsar and U. Tirnakli,

O. Afsar and U. Tirnakli,

O. Afsar, Dinamik sistemler için merkezsel limit teoremleri ve karmasıklık analizi, Doctor Thesis (Ege University, Izmir, 2013).

M. Portesi, Information geometry for physical systems using generalized measures of distance, communication at XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics (4-8 December 2006, Mar del Plata, Argentina).

H. Matsuzoe, Hessian structures on deformed exponential families and their conformal structures, Differential Geometry and its Applications (2014), in press, doi: http://dx.doi.org/10.1016/j.difgeo.2014.06.003

S. Amari, Differential geometry derived from divergence functions: Information geometry approach, Mathematics of Distances and Applications (2012).

B.N. Tiwari, V. Chandra and S. Banerjee, A thermodynamic geometric study of Renyi and Tsallis entropies, preprint (2010), 1008.2853 [cond-mat.stat-mech].

C. Vignat, Orthogonal polynomials and geometry of the quantum harmonic oscillator on constant curvature surfaces, communicated in the Conference Information Geometry and its Applications, (2 to 6 August 2008, Leipzig).

[1112] A.M. Mathai, Some recent results connecting many areas, communicated at the International Conference on Mathematical Sciences (3-5 January 2011, Pala-Kerala, India).

T. Yamano, Universality of thermodynamical Legendre transform structure against the statistical entropy and the expectation value, Proceeding of the meeting on Quantum Theory of Thermo-field and its Applications, Soryushiron Kenkyu (Kyoto) 103, 104-107 (2001)[in Japanese].

D. Campos, Renyi and Tsallis entropies for incomplete or overcomplete systems of events, Physica A 389, 981-992 (2010).

D. Campos, Macroscopic characterization of data sets by using the average absolute deviation, Physica A 393, 222-234 (2014).

G.L. Gilardoni, On a Gel’fand-Yaglom-Peres theorem for f-divergences, preprint (2009), 0911.1934 [cs.IT].

H. Hasegawa, Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems, preprint (2009), 0912.0521 [cond-mat.stat-mech].

Further results on generalized conditional entropies

A.E. Rastegin, A.E. Rastegin,

X. Feng,
The Tsallis entropy and the Boltzmann entropy applicable to the same classic generalized system,
World Chinese Forum on Science of General Systems (WCFSGS) 6 (S1), Total No. 49 (2010) [ISSN 1936-7260].

J.P. Boon and J.F. Lutsko, Is nonextensive statistics applicable to continuous Hamiltonian systems?, preprint (2010), 1003.3592 [cond-mat.stat-mech].

L. Guo and J. Du, Thermodynamic potentials and thermodynamic relations in nonextensive thermodynamics,

Hong Qian, Thermodynamics of Markov processes with non-extensive entropy and free energy, preprint (2010), 1005.1251 [math-ph].

T. Oikonomou and G.B. Bagci, The route from discreteness to the continuum for the non-logarithmic q-entropy, preprint (2017), 1705.00407 [cond-mat.stat-mech].

G. Samid, Shannon revisited - Considering a more tractable expression to measure and manage intractability, uncertainty, risk, ignorance, and entropy, preprint (2010), 1006.1055 [cs.IT].

A.E. Rastegin, Properties and upper continuity bounds of relative q-entropy for 1 < q ≤ 2, preprint (2010), 1010.1335 [math-ph].

[1543] N.P. Shah, Entropy maximisation and queues with or without balking, Doctor Thesis (School of Electrical Engineering and Computer Science Faculty of Engineering and Informatics, University of Bradford, 2014).

[1570] F. Pavese, On the definition of the measurement unit for extreme quantity values: Some considerations on the case of temperature and the Kelvin scale, arxiv 1612.07161.

[1575] A. Plastino and M.C. Rocca, Hidden correlations entailed by q-non additivity render the q-monoatomic gas highly non trivial, preprint (2017), 1702.03535 [cond-mat.stat-mech].

[1591] V. Patrascu, Shannon entropy for imprecise and under-defined or over-defined information, 25th Conference on Applied and Industrial Mathematics, CAIM 2017 (Iasi, Romania, September 14-17, 2017), 1709.04729 [cs.IT].

T.D. Frank, Nonextensive cutoff distributions of postural sway for the old and the young, Physica A 388, 2503-2510 (2009).

E.S. dos Santos, Flutuacoes posturais no equilibrio estatico: Adaptacoes com a posicao de perna unica, Master Thesis (Universidade Estadual de Maringa, 2013).

R.S. Mendes and C. Anteneodo, Comment on ”Anomalous spreading of power-law quantum wave packets”, preprint (2000) [cond-mat/0003366].

A.K. Aringazin and M.I. Mazhitov, Gaussian factor in the distribution arising from the nonextensive statistics approach to fully developed turbulence, preprint (2003) [cond-mat/0301040].

S. Li, J. He and K. Song, Network entropies of the chinese financial market, Entropy 18, 331 (2016) (9 pages), doi:10.3390/e18090331

V. Svoboda, Generalized stochastic processes with applications to financial markets, Master Thesis (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, 2016).

F. Li, Modelling the stock market using a multi-scale approach, Master Thesis (University of Leicester, School of Management, University of Leicester, 2017).

[2071] D. Xu, Superstatistics and symbolic dynamics of share price returns on different time scales, Doctor Thesis (Queen Mary College, University of London, 2017).

[2091] R.S. Gonzalez, Difusao anomala: Transicao entre os regimes localizado e estendido na caminhada do turista unidimensional, Masther Thesis (University of Sao Paulo, Ribeirao Preto, August 2006).
[2100] J. Du, Possible dynamics of the Tsallis distribution from a Fokker-Planck equation (I), preprint (2009), 0905.4310 [cond-mat.stat-mech].

[2130] J. Ruseckas, Modeling Tsallis distributions by nonlinear stochastic differential equations with application to financial markets, communication at the APFA7 and Tokyo Tech-Hitotsubashi Interdisciplinary Conference (Tokyo, 1 to 5 March 2009).

M.A. Portesi, Radiacion coherente y teoria de la informacion, PhD Thesis (Universidad de La Plata - Argentina, 1995).
[2264] H. Zhao and C.S. Yu, Remediing the strong monotonicity of the coherence measure in terms of the Tsallis relative α entropy, preprint (2017), 1704.04876 [quant-ph].

[2303] M. Proks, *Analysis of financial time series*, Doctor Thesis (Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, 2017).

[2334] P.D. Batista, I.C. Marques, L.H. de Almeida Fauth and M.O.R. Brandao, Web of Science: showing a bug today that can mislead scientific research output’s prediction, preprint (2016), arxiv 1611.01548
[2342] D. Koutsoyiannis and Z.W. Kundzewicz, Editorial - Quantifying the impact of hydrological studies, Hydrological Sciences Journal 52, 3-17 (Feb. 2007).

A.M.C. de Souza, *Estudos sobre o ensemble de Wishart-Tsallis de matrizes aleatorias*, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

O. Pfaffel, Eigenvalues of Large Random Matrices with Dependent Entries and Strong Solutions of SDEs, Doctor Thesis (Technische Universität München, Lehrstuhl für Mathematische Statistik, 2013).

A. Robledo, Comment on “Temporal scaling at Feigenbaum points and nonextensive thermodynamics” by P. Grassberger, preprint (2005) [cond-mat/0510293].

C. Tsallis, Comment on “Temporal scaling at Feigenbaum points and nonextensive thermodynamics” by P. Grassberger, preprint (2005) [cond-mat/0511213].

[2568] E. Mayoral and A. Robledo, Tsallis’ q index and Mori’s q phase transitions at edge of chaos, Phys. Rev. E 72, 026209 (2005).

F. Sattin, On the computation of the entropy for dissipative maps at the edge of chaos using non-extensive statistical mechanics, preprint (2002) [cond-mat/0212173].

Q.A. Wang, Measuring the information growth in fractal phase space, preprint (2003) [cond-mat/0305540].

[2793] M.H.A. Hassan Quantifying heteroskedasticity metrics, Doctor Thesis (Faculty of Science and Technology, Institute for Intelligent Systems Research and Innovation, Deakin University, Australia, 2016).

K. Fu, J. Qu, Y. Chai and T. Zou, Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals, Biomedical Signal Processing and Control 18, 179-185 (2015).

Y.A. Pykh, Pairwise interactions origin of entropy functions, preprint (2015), 1506.05731

N. Flores-Gallegos, I. Guillen-Escamilla and J.C. Mixteco-Sanchez, Non-extensive entropies on atoms, molecules and chemical processes, Chapter 9 (2015).

M. Barati and N. Moradi, Inconsistency of the hydrogen-atom with $\beta \rightarrow \beta'$ transformation in Tsallis statistics, Physica A 387, 2455-2461 (2008).

M. Barati and N. Moradi, Study of the specific heat of a hydrogenic donor impurity at the center of a spherical quantum dot in contact with a heat reservoir, J. Comp. and Theor. Nanoscience 6, 1709-1713 (2009).

[2893] A. Gulec, Ozet fraktallarin yogun madde fiziginde uygulamalari, Doctor Thesis (Ege University, Izmir, Turkey, February 1997).

A. Campa, A. Giansanti and D. Moroni, Canonical solution of a system of long-range interacting rotators on a lattice, preprint (2000) [cond-mat/0002168].

S. Gupta and D. Mukamel, Quasistationarity in a long-range interacting model of particles moving on a sphere, preprint (2013), 1309.0194 [cond-mat.stat-mech].

115
A. Taruya and M.A. Sakagami,
A. Taruya and M. Sakagami,
J.A.S. Lima and L. Marassi,
A. Taruya and M. Sakagami, , Mon. Not. R. Astron. Soc. 364
M. Sakagami and A. Taruya,
A. Taruya and M. Sakagami,
Constraining the nonextensive mass function of halos from BAO,
L. Marassi, J.V. Cunha and J.A.S. Lima,
Power-law stellar distributions
J.A.S. Lima and R.E. de Souza,
Role of viscous friction in the reverse rotation of a disk
J.A.S. Lima, R. Silva Jr. and J. Santos,
Nonextensive effects on Chandrasekhars dynamical friction,

[3137] Z. Chen and X. Xu, *Multifractality can be a universal signature of phase transitions*, preprint (2013), 1304.3189 [cond-mat.stat-mech].

[3271] F. Verheest, Comment on “Head-on collision of electron acoustic solitary waves in a plasma with nonextensive hot electrons”, preprint (2012), 1204.1478 [physics.space-ph].
Jeans type analysis of chemotactic collapse

[3631] ALICE Collaboration, Neutral pion and η meson production in proton-proton collisions at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV, Phys. Lett. B 717, 162-172 (2012).

[3649] E. Fragiacomo (ALICE Collaboration), Hadronic resonances from ALICE in pp collisions, EPJ Web of Conferences 36, 00009 (2012), DOI: 10.1051/epjconf/20123600009

[3653] J. Song, X. R. Gou, F. L. Shao and Z. T. Liang, Quark number scaling of hadronic \(p_T\) spectra and constituent quark degree of freedom in \(p-Pb\) collisions at \(\sqrt{s_{NN}} = 5.02\) TeV, preprint (2017), 1707.03949 [hep-ph].

[3657] A. Badala (ALICE Collaboration), Hadronic resonance production measured by the ALICE detector at LHC energies, EPJ Web of Conferences 95, 04002 (2015) (7 pages), doi: 10.1051/epjconf/20159504002

[3665] S. Schuchmann, Modification of \(K_0^0\) and \(\Lambda\) transverse momentum spectra in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV with ALICE, Doctor Thesis (Goethe University Frankfurt, Germany, Springer, 2017).

A.S. Parvan, O.V. Teryaev and J. Cleymans,
T.V. Acconcia et al,
H.R. Wei, F.H. Liu and R.A. Lacey,
F. Bellini (ALICE Collaboration),
B.C. Li, G.X. Zhang and Y.Y. Guo,
N. Kakati, S.K. Tiwari, S. Tripathy and R. Sahoo,
A. Khuntia, S. Tripathy, R. Sahoo and J. Cleymans,
D. Thakur, S. Tripathy, P. Garg, R. Sahoo and J. Cleymans,
F.H. Liu, Y.Q. Gao, T. Tian and B.C. Li,
Statistical power-law due to reservoir fluctuations and
T.S. Biro, P. Van, G.G. Barnafoldi and K. Urmossy,
T.S. Biro, G.G. Barnafoldi, P. Van and K. Urmossy,
The ALICE Collaboration,
ALICE Collaboration,
S. Sharma, M. Kaur and S. Thakur,
F.H. Liu and B.Y. Cui,
F.H. Liu, H.R. Wei and R.A. Lacey,
L.L. Wang,
CMS and TOTEM Collaborations,
S. Mitra,
S. Mitra and V. Chandra,
J. Cleymans,

J. Cleymans,

The ALICE Collaboration, Production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV, Eur. Phys. J. C (2015) 75, 1 (2015), doi: 10.1140/epjc/s10052-014-3191-x

ALICE Collaboration Production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, preprint (2017), 1701.07797 [nucl-ex].

ALICE Collaboration, Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV, Phys. Rev. D 91, 112012 (2015) (33 pages).

F. Bellini (ALICE Collaboration), Hadronic resonance production measured by ALICE at the LHC, Nuclear Physics A 931, 846-850 (2014).

[3691] T.S. Biro and Z. Neda, Dynamical stationarity as a result of sustained random growth, preprint (2016), 1611.06698 [cond-mat.stat-mech].

[3695] Yu. V. Kharlov (ALICE Collaboration), Physics with the ALICE experiment, Physics of Atomic Nuclei 76 (12), 1497-1506 (2013) [Elementary Particles and Fields-Experiment].

[3699] M.S. Kayl, Measurement of the charged particle density with the ATLAS detector: First data at vs = 0.9, 2.36 and 7 TeV, Doctor Thesis (University of Amsterdam, 2016).

[3714] E. Megias, D.P. Menezes and Airton Deppman, Nonextensive thermodynamics with finite chemical potentials and protoneutron stars, EPJ Web of Conferences 80, 00040 (2014) (6 pages), doi: 10.1051/epjconf/20148000040

139

Multiscale structure of the magnetic field and speed at 1 AU during the declining phase of solar cycle 23 described by a generalized Tsallis PDF, J. Geophys. Res. - Space Phys. 109, A12107 (2004).

The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas, Phys. Plasmas 21, 012902 (2014) (10 pages); doi: 10.1063/1.4861865

T. S. Biro and K. Urmossy, Pions and kaons from stringy quark matter, preprint (2008), 0812.2985 [hep-ph].

Collisionless damping of dust-acoustic waves in a charge varying dusty plasma

R. Amour, M. Tribeche and T.H. Zerguini,

S. Mayout and M. Tribeche,

P. Eslami, M. Mottaghizadeh and H.R. Pakzad,

J.N. Han, J.X. Li, J.H. Luo, G.H. Sun, Z.L. Liu, S.H. Ge and X.X. Wang,

M. Bacha, L. Ait Gougam and M. Tribeche,

M. Bacha and M. Tribeche,

M. Benzekka and M. Tribeche,

N.S. Saini and R. Kohli,

H.R. Pakzad, K. Javidan and A. Rafiei,

N.S. Saini and R. Kohli,

W.F. El Taibany and M. Tribeche,

A. Merriche, L. Ait Gougam and M. Tribeche,

A. Merriche and M. Tribeche,

R. Amour and M. Tribeche,

M. Tribeche and A. Merriche,

A. Merriche and M. Tribeche,

R. Amour and M. Tribeche,

M. Tribeche and A. Merriche,

M. Tribeche and M. Tribeche,

M. Bacha, M. Tribeche and P.K. Shukla,

M. Tribeche and A. Merriche,

R. Amour and M. Tribeche,

M. Tribeche, R. Amour and P.K. Shukla,

M. Bacha, M. Tribeche and P.K. Shukla,

P. Eslami, M. Mottaghizadeh and H.R. Pakzad,

P. Eslami, M. Mottaghizadeh and H.R. Pakzad,

M. Tribeche, P.K. Shukla and H.R. Pakzad,

M. Bacha, M. Tribeche and P.K. Shukla,

Head-on collision of two ion-acoustic solitary waves in plasmas with electrons described by Tsallis distribution, Physica A 442, 409-416 (2016).

Updated calculations of collision strengths with emphasis on nonextensive distribution with equilibrium and \(\kappa \) distributed electron energies.

Signatures of the non-Maxwellian H to ZN ionization equilibrium for the non-Maxwellian electron distribution in

- Plasmas novo-ideas e complexos, communication (2013).

- Signatures of the non-Maxwellian \(\kappa \)-distributions in optically thin line spectra. I. Theory and synthetic Fe IX-XIII spectra, Astronomy and Astrophysics 570, A124 (2014) (23 pages), doi: http://dx.doi.org/10.1051/0004-6361/201424124

Analyses of... | (2-6 September 2012, Sao Sebastiao, Sao Paulo, Brazil), doi:http://dx.doi.org/10.1063/1.4804132

Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Levy distributions, Phys. Rev. Lett. 84, 2770 (2000).

Tsallis distribution from minimally selected order statistics, preprint (2007), 0708.2660 [cond-mat.stat-mech].

Critical Tsallis exponent in heavy ion reaction

K. Morawetz,

T. Wibig and I. Kurp, Large transverse momenta in statistical models of high energy interactions, JHEP 122003039 (Institute of Physics Publishing for SISSA/ISAS, 2003).

[4507] G. Wilk, *Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC*, communicated at the IX Workshop on Correlation and Femtoscopy (5-8 November 2013, Acireale, Italy).

[4521] CMS Collaboration, Measurement of Λ_b cross section and the $\bar{\Lambda}_b$ to Λ_b ratio with $J/\psi \Lambda$ decays $\sqrt{s} = 7$ TeV, Phys. Lett. B 714, 136-157 (2012).

Effects of shower partons on soft and semihard hadrons produced in Pb-Pb collisions at 2.76 TeV, preprint (2014), 1406.5733 [nucl-th].

Predicting nucleosome positioning based on geometrically transformed Tsallis entropy, Plos One 9 (11), e109395 (2014) (16 pages).

[4876] D.R. Bickel, *Time-series intermittency quantified by generalized entropy: An alternative to multifractal analysis*, communicated at the "International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics" (Denton, Texas, 3-6 April 2000).

[4897] Z. Liu, Z. Han, Y. Zhang and Q. Zhang, *Multiwavelet packet entropy and its application in transmission line fault recognition and classification*, IEEE Transactions on Neural Networks and Learning Systems 25 (11), 2043-2052 (2014), doi: 0.1109/TNNLS.2014.2303086

N. Kalogeropoulos, *Convexity and the “Pythagorean” metric of space(-time)*, preprint (2016), 1606.05528 [physics.gen-ph].

N. Kalogeropoulos, *Convexity and the “Pythagorean” metric of space(-time)*, preprint (2016), 1606.05528 [physics.gen-ph].

[5270] E. Farkash, Structural prediction of flexible molecular interactions, Doctor Thesis (Tel Aviv University, 2012).

J.S. Shiner and M. Davison, Quantifying the connectivity of scale-free and biological networks, Chaos, Solitons and Fractals 21, 1 (2004).

[5628] F. Nie, *A three-level thresholding technique based on nonextensive entropy and fuzzy partition with artificial bee colony algorithm*, Internat. J. Hybrid Information Technology **8** (7), 1-10 (2015), doi: http://dx.doi.org/10.14257/ijhit.2015.8.7.01

M.M. DiStasio and C.T. Bock, Data packet collection and monitoring computer system for e.g. security system functions, has wireless access point and data collection platform provided to calculate entropy of determined estimate of received signal strength, Assignee: Syracuse Res. Corp., US2010226255-A1 (2010).

X. Bai, J. Chen and H. Li, Local corrosion detecting method for horizontal well sleeve in oil field, involves outputting sleeve local corrosion information in neuron network according to calculating result of input Tsallis wavelet energy entropy, Assignee: Harbin Inst Technology, CN101650327-A (2010).

X. Li and Q. Xu, Monte Carlo illumination self-adaptive method for image processing field, involves sampling voltage of pixel when value is larger than threshold value, and utilizing sampling points to increase another threshold value according to rule, Patent Number(s): CN102289842-A, Patent Assignee Name(s) and Code(s): UNIV TIANJIN(UTIJ-C)

Are all highly liquid securities within the same class?

On superstatistical multiplicative-noise processes

On the distribution of high-frequency stock market traded volume: A dynamical scenario, preprint (2005) [cond-mat/0502337].

Thresholding the courtesy amount of Brazilian bank checks based on Tsallis entropy, IEEE Latin America Transactions 7 (6), 726-731 (2009).

[5825] L. Bai, L. Rossi, H. Bunke and E.R. Hancock, Attributed graph kernels using the Jensen-Tsallis q-differences, Lecture Notes in Computer Science 8724 LNAI, Issue PART 1, 99-114 (2014) [European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014; Nancy; France; 15 September 2014 through 19 September 2014; Code 10499].

F. Vallianatos, *Could complexity theory and statistical physics be used to support earthquake precursors recognition?*, 35th General Assembly of the European Seismological Commission, ESC2016-634 (2016).

[5906] L. Telesca, *A non-extensive approach in investigating the seismicity of L’ Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8)*, Terra Nova 22(2), 87-93 (2010).

[5985] D. Koutsoyiannis, The scaling properties in the distribution of hydrological variables as a result of the maximum entropy principle, communicated at European Geosciences Union General Assembly (24-29 April 2005, Vienna).

[6043] D. La Vecchia, L. Canponovo and D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization, Computational Statistics and Data Analysis 82, 137-151 (2015).

I.J.A. Soares and L.O. Murta Junior, O uso de filtros espaciais baseados em difusão anomala para a diminuição do tempo de aquisição em MRI-DTI, XVIII Congresso Brasileiro de Física Médica - Simpósio de Instrumentação e Imagens Médicas (12 to 15 August 2013, São Pedro - São Paulo, Brazil).

[6155] T. Pedron and M.F. Cornelo, Densidades de distribuicao de frequencias de velocidades de vento medio diario e rajadas maximas no Estado do Parana, communicated at the XVII Congresso Brasileiro de Meteorologia (Gramado-RS, 2012).

I. Ivanov, *Revolution in Thermodynamics*, Articles and Remarks [In Russian] [http://www.scientific.ru/journal/tsallis/tsallis.html]

[6287] D. Bagchi and C. Tsallis, Universal sensitivity to the initial conditions of a d-dimensional Fermi-Pasta-Ulam model including long-range interactions, communicated at the International School of Complexity (2015, Erice).

