NONEXTENSIVE STATISTICAL MECHANICS
AND THERMODYNAMICS: BIBLIOGRAPHY *

July 10, 2018

GENERAL THEORY

Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–694, 696–1079, 1082–1726]
H-theorem and irreversibility: [1727–1760]
Ehrenfest theorem, von Neumann equation: [3, 1761–1767]
Quantum statistics: [1768–1871]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1781, 1872–1965]
Langevin and Fokker-Planck equations: [1731, 1766, 1772, 1945, 1966–2365]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 2366–2383]
Poisson equation: [2384–2393]
Callen identity: [2394]
Ising transmissivity: [2395]
Classical equipartition principle: [2396–2398]
Connection with quantum uncertainty: [2399–2436]
Connection with Fisher information measure: [2437–2449]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 48, 53–55, 1843, 2450–2825]
Connection with general relativity, cosmology, dark energy, string theory: [2438, 2826–2913]
Connection with quantum groups and quantum mechanics: [2914–2958]
Connection with wavelets; Signal processing; EEG: [2959–3028]
Connection with quantum correlated many-body problems: [3029–3039]
Connection with the Gentile and the exclusion Haldane statistics: [3040–3043]
Connection with finite systems: [3044–3049]
Rigorous results (generalized entropy and thermostatistics): [2453–2458, 3044–3049]
Integral transformations (Hilhorst and Prato formulae): [1770, 2366, 3050–3052]

ONE-BODY SYSTEMS

Two-level system: [1, 3053]
Harmonic and anharmonic oscillators: [906–908, 915, 3048, 3053–3055]
Free particle: [3056]
Larmor precession: [1763]
Rigid rotator: [3051, 3057–3059]
Hydrogen and hydrogen-like atoms: [1080–1082, 1085, 3060–3084]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 6763 articles from 13273 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [2366, 2396, 3050, 3085–3109]
Independent spin paramagnet, Landau magnetism: [2919, 2922–2925, 3110–3117]
Black-body radiation and photonic systems: [3118–3168]
$d = 1$ Ising ferromagnet: [3169–3173]
$d \geq 2$ Ising and other ferromagnets: [2395, 3174–3216]
Infinite-range Ising ferromagnet: [3217]
Potts ferromagnet, Molecular field approximation: [2394, 3191, 3218–3221]
Percolation: [3222–3224]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [3225–3280]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [1927, 2384, 2438, 3281–3418]
Lévy-like and correlated anomalous diffusion: [17, 2029, 2030, 2083–2088, 2093, 2104, 2109, 2110, 2116, 3419–3480]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [2384, 3464–3467, 3481–3722]
Solar neutrinos; High energy physics: [3723–4182]
Ferrofluid-like materials, Lennard-Jones fluids: [3208, 4183–4204]
Solitons: [4205, 4206]
Plasma (electron velocity distribution, magnetohydrodynamics): [4207–4323, 4325–4602]
Glass, Spin-glass: [4603–4635]
Superfluid helium; Bose-Einstein condensation: [4636–4652]
Test of Boltzmann-Gibbs thermostatistics: [2830, 3138, 3139]
Cosmic rays; Elementary particles: [4154, 4653–4867]
Biological systems; Microemulsions; Liquid crystals: [4868–4964]
Stochastic resonance; Brownian motors: [4965–4990, 4992–5002]
Connection with the Theory of perceptions: [17]
Connection with the Theory of finances: [6, 3482, 4986, 4987, 4989–4992, 5003–5171]
Consistent testing; Statistical inference; Theory of probabilities: [505–517, 519–546, 1923, 5173–5217]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [1946, 3202, 5433–5739]
Neural and other networks: [4931, 4932, 5740–5842]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [2959–2963, 2965, 2974–2976, 2979–2982, 5843–6362]
Geophysics: [2981, 2982, 5911, 6363–6425]
Medicine: Tomography: [2983, 2988–2990, 5843, 6108, 6426–6477]
Symbolic dynamics, linguistics, philology, cognitive sciences, hydrology, ecology: [2492, 2494, 2524–2532, 5382, 6478–6613]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [453, 6614–6763]
References

[125] M. Hotta, Bi-composability and generalized entropy composition with different q indices, preprint (1999) [cond-mat/9908236].

A. Plastino and M.C. Rocca, \(q \) -Gamow states as continuous linear functionals on analytical test functions, preprint (2015), 1511.04010 [math.CA].

A. Plastino, M.C. Rocca and D.J. Zamora, \(q \) -Gamow states for intermediate energies, preprint (2016), 1604.06910 [cond-mat.stat-mech].

W.S. Nascimento, Sobre uma adjuncao entre a Teoria Matematica da Comunicacao e a Teoria Quantica, communicated at Seminarios de Pesquisa (PPGF, Instituto de Fisica, Universidade Federal da Bahia, 2017).

[169] M.V. Jankovic, Quantum Tsallis entropy and projective measurement, preprint (2009), 0904.3794 [physics.data-an].

[440] H. Touchette, When is a quantity additive, and when is it extensive?, Physica A 305, 84 (2002).

[560] Y.J. Fan and H.X. Cao, Monotonicity of the unified quantum (r, s)-entropy and (r, s)-mutual information, Quantum Inf. Process 14, 4537-4555 (2015), doi: 10.1007/s11128-015-1126-6

[619] Q.A. Wang, A. Le Mehaute, L. Nivanen and M. Pezeril, Equilibrium or meta-equilibrium incomplete thermostatistics with different \(q \) indices, preprint (2003) [cond-mat/0305398].

On the stability of generalized entropies

X.L. Cao and S.L. Luo,

T. Yamano,

S. Abe and G.B. Bagci,

A.E. Rastegin,

Y. Luo, F.G. Zhang and Y. Li,

J.S. Kim,

S. Nadarajah and S. Kotz,

G.P. Pavlos,

A. Iliopoulos and E. Aifantis,

J. Nikolaides and E. Aifantis,

G. Kaniadakis and A.M. Scarfone,

G. Lesche and A. Aifantis,

E.C. Iliopoulos, M. Tsolaki and E.C. Aifantis,

A. El Kaabouchi and S. Abe,

Multipartite entanglement measures

S. Szalay,

E. Canessa,

Possible force-entropy correlation

J. Naudts,

F. Brouers, O. Sotolongo-Costa and K. Weron, Burr, Levy, Tsallis

F. Brouers and F. Marquez-Montesino, Dubinin isotherms versus the Brouers-Sotolongo family isotherms: A case study

T. Matolcsi and P. Van, On the continuity and Lesche stability of Tsallis and Renyi entropies and q-expectation values, preprint (2009), 0910.1918 [cond-mat.stat-mech].

F. Topsoe, Paradigms of cognition, communicated at the Research Institute of Mathematical Science Workshop on Mathematical Aspects of Generalized Entropies and their Applications (7-9 July 2009, Kyoto).

F. Topsoe, Elements of the cognitive universe, AIP Conference Proceedings 1853, 040002 (2017) [36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2016; Ghent; Belgium; 10 to 15 July 2016; Code 128341].

N.R. Bramley, J.D. Nelson, M. Speekenbrink, V. Crupi and D.A. Lagnado, What should an active causal learner value, Psychonomics (2104).

M. Li, Q. Zhang and Y. Deng, Multiscale probability transformation of basic probability assignment, preprint (2014), 1406.1697 [cs.AI].

[842] A. Rodriguez, V. Schwammle and C. Tsallis, Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q–Gaussians as $N \to \infty$ limiting distributions, JSTAT P09006 (2008).

[854] S. Umarov and C. Tsallis, Limit distribution in the q-CLT for $q \geq 1$ can not have a compact support, preprint (2010), 1012.1814 [cond-mat.stat-mech].

[860] H. Suyari and T. Wada, Multiplicative duality, q-triplet and (μ, ν, q)-relation derived from the one-to-one correspondence between the (μ, ν)-multinomial coefficient and Tsallis entropy S_q, Physica A 387, 71-83 (2007).

C.J. Keylock, Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy, Oikos 109, 203 (2005).

R. Uzdin, Generalized Clausius inequalities for small systems - higher order heat flows and their related information measures, preprint (2016), 1609.05742 [quant-ph].

C. Vignat and A. Plastino, Density operators that extremize Tsallis entropy and thermal stability effects, Physica A 361, 139-160 (2006).
References:

[1247] Reference function: q-Gaussian,
[1248] Reference function: q-exponential,

[1369] T. Yamano, Universality of thermodynamical Legendre transform structure against the statistical entropy and the expectation value, Proceeding of the meeting on Quantum Theory of Thermo-field and its Applications, Soryushiron Kenkyu (Kyoto) 103, 104-107 (2001)[in Japanese].

G.L. Gilardoni, *On a Gel’fand-Yaglom-Peres theorem for f-divergences*, preprint (2009), 0911.1934 [cs.IT].

H. Hasegawa, *Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems*, preprint (2009), 0912.0521 [cond-mat.stat-mech].

S. Presse, K. Ghosh, J. Lee and K.A. Dill, Nonextensive entropies are inconsistent with the probability multiplication rule, preprint (2013).

C. Tsallis, Comment on “Nonadditive Entropies Yield Probability Distributions with Biases not Warranted by the Data” by Pressé et al, preprint (2014), 1404.1257 [cond-mat.stat-mech].

M. Campisi, Comment on “Tsallis power laws and finite baths with negative heat capacity”, preprint (2013), 1310.5556 [cond-mat.stat-mech].

P.F. Pessoa Macedo, Contributos para a teoria de maxima entropia na estimacao de modelos mal-postos [Contributions to the theory of maximum entropy estimation for ill-posed models], Doctor Thesis (Universidade de Aveiro, Departamento de Matematica, 2013).

G. Sonnino and G. Steinbrecher, New class of generalized extensive entropies for studying dynamical systems in highly anisotropic phase space, preprint (2013), 1311.4790 [cond-mat.stat-mech].

[1639] N.P. Shah, Entropy maximisation and queues with or without balking, Doctor Thesis (School of Electrical Engineering and Computer Science Faculty of Engineering and Informatics, University of Bradford, 2014).

[1817] F.A. Wudarski, Non-Markovian dynamics in the open quantum systems, Doctor Thesis (Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, 2015).

P.H. Chavanis and S. Kumar, Comparison between the logotropic and ΛCDM models at the cosmological scale, Journal of Cosmology and Astroparticle Physics 05, 018 (2017) (40 pages).

J. Du, Nonextensive power law distributions and the q-kinetic theory for the systems with self-gravitating long-range interactions, preprint (2006) [cond-mat/0603803].

D. Xu and C. Beck,
M. Sheraz, V. Preda and S. Dedu,
A. Kundu,
Y. Wang and P. Shang,
C.-Y. Lee,
T. Liu, P. Zhang, W.S. Dai and M. Xie,
B. Schafer, C. Beck, K. Aihara, D. Witthaut and M. Timme,
F. Li,
Y. Yin and P. Shang,
J. de Souza and S.M.D. Queiros,
T.R.S. Moura,
O.J. Tapiero,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Bormetti and D. Delpini,
C.S. Tapiero and P. Vallois,
G. Nikola and G. Ramazan,
L. Borland,
Non-extensive random walks
J. Chen, T. Liu, Z. Huang and G. Su,
C. Cadavid, M.E. Puerta, J.D. Velez and J.F. Garcia,
J. Chen, T. Liu, Z. Huang and G. Su,
A. Dmitriev and J. Pelyuk,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,
G. Nikola and G. Ramazan,
A. Dmitriev, V. Silchev and V. Dmitriev,
M. Xu, P. Shang and J. Huang,
V. Svoboda,

[2285] J. Ruseckas, Modeling Tsallis distributions by nonlinear stochastic differential equations with application to financial markets, communication at the APFA7 and Tokyo Tech-Hitotsubashi Interdisciplinary Conference (Tokyo, 1 to 5 March 2009).

[2434] H. Zhao and C.S. Yu, Remedying the strong monotonicity of the coherence measure in terms of the Tsallis relative α entropy, preprint (2017), 1704.04876 [quant-ph].

[2607] A. Prestes, Thermodynamic nonextensivity and elastoplasticity: Determining the Tsallis entropic index q for a SOC system by the multifractal function f(α), preprint (1999).

[2978] M.H.A. Hassan Quantifying heteroskedasticity metrics, Doctor Thesis (Faculty of Science and Technology, Institute for Intelligent Systems Research and Innovation, Deakin University, Australia, 2016).

REFERENCES

[3219] P.R. del Santoro, Aproximacao de campo molecular do modelo de Potts generalizado, Master Thesis (Universidade de Sao Paulo-Brazil, 1994).

W. Hurlimann, *Benford’s law in scientific research*, Internat. J. Scientific and Engineering Res. 6 (7), 143-148 (2015), ISSN 2229-5518

G. Livadiotis and D.J. McComas, *Dynamic of stationary states out of equilibrium in space plasmas*, communicated at the 7th General Conference of the Balkan Physical Union (Alexandroupolis, 9-13 September 2009).

G. Livadiotis and D.J. McComas, *Non-equilibrium stationary states in the heliosphere and the influence of pick-up ions*, in *Pickup Ions Throughout the Heliosphere and Beyond* 1302, 70-76 (2010).

B. Layden, *Second-order nonlinear processes in warm unmagnetized plasmas*, Doctor Thesis (School of Physics, Faculty of Science, University of Sydney, December 2013).

[379] ALICE Collaboration, Production of Σ(1385)± and Ξ(1530)⁰ in p-Pb collisions at √s_{NN} = 5.02 TeV, Eur. Phys. J. C 77, 389 (2017), doi: 10.1140/epjc/s10052-017-4943-1

[3878] E. Frugiacci (ALICE Collaboration), Hadronic resonances from ALICE in pp collisions, EPJ Web of Conferences 36, 00009 (2012), DOI: 10.1051/epjconf/20123600009
[3880] S. Singh (ALICE Collaboration), Strange hadron and resonance production in Pb-Pb collisions at √s_{NN} = 2.76 TeV with the ALICE experiment at LHC, Nuclear Phys. A 904-905, 539c-542c (2013).
[3887] A. Badala (ALICE Collaboration), Hadronic resonance production measured by the ALICE detector at LHC energies, EPJ Web of Conferences 95, 04002 (2015) (7 pages), doi: 10.1051/epjconf/20159504002

[3914] ALICE Collaboration, Production of Σ(1385)± and Ξ(1530)0 in p − Pb collisions at √sNN = 5.02 TeV, preprint (2017), 1701.07797 [nucl-ex].

[3949] E. Megias, D.P. Menezes and Airton Deppman, Nonextensive thermodynamics with finite chemical potentials and protoneutron stars, EPJ Web of Conferences 80, 00040 (2014) (6 pages), doi: 10.1051/epjconf/20148000040

[4798] G. Wilk, Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC, communicated at the IX Workshop on Correlation and Femtoscopy (5-8 November 2013, Acireale, Italy).

[4812] CMS Collaboration, Measurement of Λ_b cross section and the Λ_b to Λ_0 ratio with J/ψ Λ decays $\sqrt{s} = 7$ TeV, Phys. Lett. B 714, 136-157 (2012).

F. Fernandez-Navarro, C. Hervas-Martinez, P.A. Gutierrez, J.M. Pena-Barragan and F. Lopez-Granados,

C.H. Zhang, S.J. Cheng and S.H. Cao,

F. Fernandez-Navarro, C. Hervas-Martinez, M. Cruz-Ramirez, P.A. Gutierrez and A. Valero,

C. Tsallis, G. Bemski and R.S. Mendes,

L. Diambra, L. C. Cintra, D. Schubert, and L. da F. Costa,

F. Fernandez-Navarro, C. Hervas-Martinez, P.A. Gutierrez and M. Carbonero-Ruz,

A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada,

D. Choy and S.-H. Chen,

J. Wu, Y. Zhang and Z. Mu,

B. Kierdaszuk and J. Wlodarczyk,

A.M. Reynolds and S. Geritz,

P.T. Landsberg,

E. Akturk and A. Harkin,

T. Villmann and T. Geweniger,

D.S. Pillai and N. Rajasekar,

M. Hammad and K. Wang,

T. Villmann and T. Geweniger,

F. Fernandez-Navarro, C. Hervas-Martinez, P.A. Gutierrez, R. Ruiz and J.C. Riquelme,

F. Fernandez-Navarro, C. Hervas-Martinez, M. Cruz-Ramirez, P.A. Gutierrez and A. Valero,

A.M. Reynolds,

A.M. Reynolds,

A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada,

T. Nahlik, J. Urban, P. Cisar, J. Vanek, and D. Stys,

H.U. Bodeker, C. Beta, T.D. Frank and E. Bodenschatz,

L. Diambra, L. C. Cintra, D. Schubert, and L. da F. Costa,

F. Fernandez-Navarro, C. Hervas-Martinez and P.A. Gutierrez,

J. Wu, Y. Zhang and Z. Mu,

B. Kierdaszuk and J. Wlodarczyk,

A.M. Reynolds,

A.M. Reynolds,

F. Fernandez-Navarro, C. Hervas-Martinez, P.A. Gutierrez and M. Carbonero-Ruz,

F. Fernandez-Navarro, C. Hervas-Martinez, M. Cruz-Ramirez, P.A. Gutierrez and A. Valero,

C.H. Zhang, S.J. Cheng and S.H. Cao,

D.S. Pillai and N. Rajasekar,

M. Hammad and K. Wang, Fingerprint classification based on a Q-Gaussian multi-class support vector machine, ACM (2017), doi: http://dx.doi.org/10.1145/3077829.3077836

T. Villmann and T. Geweniger,

F. Fernandez-Navarro, C. Hervas-Martinez, P.A. Gutierrez, J.M. Pena-Barragan and F. Lopez-Granados,

D. Wu and S. Zhu, J.A. Revelli, A.D. Sanchez and H.S. Wio, Transitions induced by bounded noise

S.M.D. Queiros, On a possible dynamical scenario leading to a generalised Gamma distribution, preprint (2004) [physics/0411111].

E. Canessa, Stock market and motion of a variable mass spring, Physica A 388, 2168-2172 (2009).

[5185] D.R. Bickel, *Time-series intermittency quantified by generalized entropy: An alternative to multifractal analysis*, communicated at the "International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics" (Denton, Texas, 3-6 April 2000).

[5209] Z. Liu, Z. Han, Y. Zhang and Q. Zhang, Multiwavelet packet entropy and its application in transmission line fault recognition and classification, IEEE Transactions on Neural Networks and Learning Systems 25 (11), 2043-2052 (2014), doi: 0.1109/TNNLS.2014.2303086

[5213] D. Strzałka, Initial results of testing some statistical properties of hard disk workloads in personal computers in terms of non-extensive entropy and long-range dependencies, Entropy 19, 335 (2017) (19 pages), doi: 10.3390/e19070335

[5219] A.C. Sparavigna, Graphs of q-exponentials and q-trigonometric functions, HAL hal-01377262 (2016), doi: https://hal.archives-ouvertes.fr/hal-01377262

N. Kalogeropoulos, Ricci curvature, isoperimetry and a non-additive entropy, Entropy 17, 1278-1308 (2015), doi:10.3390/e17031278

N. Kalogeropoulos, Convexity and the “Pythagorean” metric of space(-time), preprint (2016), 1606.05528 [physics.gen-ph].

N. Sebastian, A generalized gamma model associated with a Bessel function, Integral Transforms and Special Functions 22 (9), 631-645 (2011).

S. de Picoli Junior, *Distribuicao q-exponencial de Tsallis e distribuicao de S.Loudon@elsevier.com: Uma analise empirica*, Master Thesis (Universidade Estadual de Maringa, 2001).

H. Suyari, Refined formalism of the maximum entropy principle in Tsallis statistics, preprint (2005) [cond-mat/0502928].

H. Suyari and T. Wada, Multiplicative duality, q-triplet and (μ, ν, q)-relation derived from the one-to-one correspondence between the (μ, ν)-multinomial coefficient and Tsallis entropy S_q, Physica A 387, 71-83 (2007).

H. Suyari, How can we obtain the mathematical structure in Tsallis statistics?, communicated at the Research Institute of Mathematical Science Workshop on Mathematical Aspects of Generalized Entropies and their Applications (7-9 July 2009, Kyoto).

H. Suyari, Law of multiplicative error and Its generalization to the correlated observations represented by the q-product, Entropy 15, 4634-4647 (2013), doi:10.3390/e15114634

A sequence of q-normal distributions obtained by successive τ-transformations, communicated at the Research Institute of Mathematical Science Workshop on Mathematical Aspects of Generalized Entropies and their Applications (7-9 July 2009, Kyoto).

A rooted tree whose lower bound of average description length is given by Tsallis entropy, in Complexity, Metastability and Nonextensivity, eds. S. Abe, H.J. Herrmann, P. Quarati, A. Rapisarda and C. Tsallis, American Institute of Physics Conference Proceedings 965, 80-83 (New York, 2007).

A less-greedy two-term Tsallis entropy information metric approach for decision tree classification, Knowledge-Based Systems 120, 34-42 (2017).

The Tsallis distribution and generalised entropy: Prospects for future research into decision-making under uncertainty, Working Paper No. 07-10, Centre of Full Employment and Equity (The University of Newcastle, Australia, 2007).
[5450] S. Atsawaraungsuk, Majority voting based on q-Gaussian activation function circular extreme learning machine, IEEE 9th International Conference on Knowledge and Smart Technology 56-60 (2017).
[5454] M.V. Jankovic, Quantum low entropy based associative reasoning – QLEAR learning, preprint (2017), arxiv 1705.10503

A. Moreira de Cerqueira Sobrinho, M.D. de Andrade, M.A. Chaer Nascimento and L.A.C. Malbouisson,

M. Fleischer, Scale invariance and symmetry relationships in non-extensive statistical mechanics, preprint (2005) [cond-mat/0501293].

[5870] T. Progulova and B. Gadjiev, Comparative analysis of collaboration networks, in Bayesian inference and maximum entropy methods in science and engineering, Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (4-9 July 2010, Chamonix,

F. Nie, A three-level thresholding technique based on nonextensive entropy and fuzzy partition with artificial bee colony algorithm, Internat. J. Hybrid Information Technology 8 (7), 1-10 (2015), doi: http://dx.doi.org/10.14257/ijhit.2015.8.7.01

[6054] R.S. Sneddon, SNEDDON AND ASSOC INC (SNED-Non-standard), Data value measuring method for electro encephalography data, involves computing attribute for each data subset so that attribute is dependent on data in each subset and attribute is equal to variability of data in each data subset, Patent US2005159919-A1; Patent JP2006221578-A (2006-633933).

[6075] X. Li and Q. Xu, *Monte Carlo illumination self-adaptive method for image processing field, involves sampling voltage of pixel when value is larger than threshold value, and utilizing sampling points to increase another threshold value according to rule*, Patent Number(s): CN102289842-A, Patent Assignee Name(s) and Code(s): UNIV TIANJIN(UTIJ-C)

S.M.D. Queiros, On the distribution of high-frequency stock market traded volume: A dynamical scenario, preprint (2005) [cond-mat/0502337].

[6198] L. Bai, L. Rossi, H. Bunke and E.R. Hancock, Attibuted graph kernels using the Jensen-Tsallis q-differences, Lecture Notes in Computer Science 8724 LNAI, Issue PART 1, 99-114 (2014) [European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014; Nancy; France; 15 September 2014 through 19 September 2014; Code 107499].

F. Vallianatos, Could complexity theory and statistical physics be used to support earthquake precursors recognition?, 35th General Assembly of the European Seismological Commission, ESC2016-634 (2016).

[6291] L. Telesca, A non-extensive approach in investigating the seismicity of L'Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22(2), 87-93 (2010).

241

[6375] D. Koutsoyiannis, The scaling properties in the distribution of hydrological variables as a result of the maximum entropy principle, communicated at European Geosciences Union General Assembly (24-29 April 2005, Vienna).

R. Sneddon, W. Shankle, J. Hara, J. Fallon and U. Saha, The Tsallis entropy in the EEGs of normal and demented individuals, communicated at the 11th Joint Symposium on Neural Computation (15 May 2004, University of Southern California) [deposited on 8 July 2004, Caltech].

D. La Vecchia, L. Camponovo and D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization, Computational Statistics and Data Analysis 82, 137-151 (2015).

A.C.S. Senra Filho and L.O. Murta Junior, Filtro espacial baseado em equacao de difusao isotropica anomala, XXIII Congresso Brasileiro em Engenheira Biondica XXIII CBEB

I.J.A. Soares and L.O. Murta Junior, O uso de filtros espaciais baseados em difusao anomala para a diminuicao do tempo de aquisicao em MRI-DTI, XVIII Congresso Brasileiro de Fisica Medica - Simposio de Instrumentacao e Imagens Medicas (12 to 15 August 2013, Sao Pedro - Sao Paulo, Brazil).

251

Revisiting disorder and Tsallis statistics

S. Abe and A.K. Rajagopal,

A fresh take on disorder, or disorderly science?

R. Graham,

Gambling on tough turbulence,

C. Beck,

The classical ether-drift experiments: a modern re-interpretation,

M. Consoli and A. Pluchino,

Gravity as an emergent phenomenon: experimental signatures,

M. Consoli and A. Pluchino,

Detecting the CMB dipole within the earth laboratory,

R. Graham,

Constantino Tsallis - Describing a new entropy,

A. Cho,

A fresh take on disorder, or disorderly science?,

R. Luzzi, A.R. Vasconcellos and J. Galvao Ramos,

Trying to make sense of disorder

C. Beck,

Generalized statistical mechanics approach,

C. Beck,

Statistical mechanics of the vacuum,

M. Consoli, C. Matheson and A. Pluchino,

The classical ether-drift experiments: a modern re-interpretation,

M. Consoli and A. Pluchino,

Detecting the CMB dipole within the earth laboratory,

R. Graham,

Constantino Tsallis - Describing a new entropy,

A. Cho,

A fresh take on disorder, or disorderly science?,

R. Luzzi, A.R. Vasconcellos and J. Galvao Ramos,

Trying to make sense of disorder

C. Beck,

Generalized statistical mechanics approach,

C. Beck,

Statistical mechanics of the vacuum,

M. Consoli, C. Matheson and A. Pluchino,

The classical ether-drift experiments: a modern re-interpretation,

M. Consoli and A. Pluchino,

Detecting the CMB dipole within the earth laboratory,

R. Graham,

Constantino Tsallis - Describing a new entropy,

A. Cho,

A fresh take on disorder, or disorderly science?,

R. Luzzi, A.R. Vasconcellos and J. Galvao Ramos,

Trying to make sense of disorder

C. Beck,

Generalized statistical mechanics approach,

C. Beck,

Statistical mechanics of the vacuum,

M. Consoli, C. Matheson and A. Pluchino,

The classical ether-drift experiments: a modern re-interpretation,

M. Consoli and A. Pluchino,

Detecting the CMB dipole within the earth laboratory,

R. Graham,

Constantino Tsallis - Describing a new entropy,

A. Cho,

A fresh take on disorder, or disorderly science?,

R. Luzzi, A.R. Vasconcellos and J. Galvao Ramos,

Trying to make sense of disorder

C. Beck,

Generalized statistical mechanics approach,

C. Beck,

Statistical mechanics of the vacuum,

M. Consoli, C. Matheson and A. Pluchino,

The classical ether-drift experiments: a modern re-interpretation,

M. Consoli and A. Pluchino,

Detecting the CMB dipole within the earth laboratory,

R. Graham,

Constantino Tsallis - Describing a new entropy,

A. Cho,

A fresh take on disorder, or disorderly science?,

R. Luzzi, A.R. Vasconcellos and J. Galvao Ramos,

Trying to make sense of disorder

C. Beck,

Generalized statistical mechanics approach,

C. Beck,

Statistical mechanics of the vacuum,

[6660] D. Stauffer, Earthquakes power up, Physics World (10 June 2004).

[6675] E.P. Borges, Complexidade e mecanica estatistica nao extensiva, Ciencia Hoje 223 (Janeiro/Fevereiro 2006) [in Portuguese].

256

