NONEXTENSIVE STATISTICAL MECHANICS
AND THERMODYNAMICS: BIBLIOGRAPHY *

April 1, 2019

GENERAL THEORY

Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–1843]
H-theorem and irreversibility: [1844–1879]
Ehrenfest theorem, von Neumann equation: [3, 1880–1886]
Quantum statistics: [1887–1996]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1900, 1997–2091]
Langevin and Fokker-Planck equations: [1848–1891, 2070–2508]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 2509–2526]
Poisson equation: [2527–2536]
Callen identity: [2537]
Ising transmissivity: [2538]
Classical equipartition principle: [2539–2541]
Connection with quantum uncertainty: [2542–2581]
Connection with Fisher information measure: [2582–2594]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 52–60, 1967, 2595–2996]
Connection with general relativity, cosmology, dark energy, string theory: [2583, 2997–3098]
Connection with quantum groups and quantum mechanics: [3099–3143]
Connection with wavelets; Signal processing; EEG: [3144–3224]
Connection with quantum correlated many-body problems: [3225–3235]
Connection with the Gentile and the exclusion Haldane statistics: [3236–3239]
Connection with finite systems: [2509, 3236]
Rigorous results (generalized entropy and thermostatistics): [2598–2603, 3240–3245]
Integral transformations (Hilhorst and Prato formulæ): [1889, 2509, 3246–3249]

ONE-BODY SYSTEMS

Two-level system: [1, 3250]
Harmonic and anharmonic oscillators: [954–964, 3244–3252]
Free particle: [3253]
Larmor precession: [1882]
Rigid rotator: [3248–3256]
Hydrogen and hydrogen-like atoms: [1132–1139, 3257–3283]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 7150 articles from 13670 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [2509–2539, 3246–3309]
Independent spin paramagnet, Landau magnetism: [3104–3110, 3310–3317]
Black-body radiation and photonic systems: [3318–3371]
\[d = 1 \] Ising ferromagnet: [3372–3376]
\[d \geq 2 \] Ising and other ferromagnets: [2538, 3377–3419]
Infinite-range Ising ferromagnet: [3420]
Potts ferromagnet, Molecular field approximation: [2537, 3394–3424]
Percolation: [3425–3427]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [3428–3483]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [2052, 2527, 2583, 3484–3624]
Lévy-like and correlated anomalous diffusion: [17, 2155, 2156, 2209–2244, 3625–3688]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [2527, 3670–3687, 3689–3943]
Solar neutrinos; High energy physics: [3944–4428]
Ferrofluid-like materials, Lennard-Jones and other fluids: [3411, 4429–4451]
Solitons: [4452, 4453]
Plasma (electron velocity distribution, magnetohydrodynamics): [4454–4875]
Glass, Spin-glass: [4876–4908]
Superfluid helium; Bose-Einstein condensation: [4909–4928]
Test of Boltzmann-Gibbs thermostatistics: [3001, 3341, 3342]
Cosmic rays; Elementary particles: [4396, 4929–5148]
Biological systems; Microemulsions; Liquid crystals: [5149–5250]
Stochastic resonance; Brownian motors: [5251–5288]
Connection with the Theory of perceptions: [17, 18]
Connection with the Theory of finances: [6, 3690, 5272–5463]
Consistent testing; Statistical inference; Theory of probabilities: [535–577, 2048, 5465–5522]
Theory of functions; Geometric approaches: [1210, 1213–1342, 4578, 5523–5743]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [2071, 3405, 5744–6063]
Neural and other networks: [5215, 5216, 6064–6171]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [3144–3168, 6172–6714]
Geophysics: [3167, 3168, 6245, 6715–6784]
Medicine; Tomography: [3169–3176, 6172, 6451, 6785–6839]
Symbolic dynamics, linguistics, philology, cognitive sciences, hydrology, ecology: [2641–2688, 5692, 6840–6989]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [482, 6990–7150]
References

[68] E.M.F. Curado, Condiciones para a existencia de estadisticas generalizadas, communicated at the XX Encontro Nacional de Fisica da Materia Condensada (10-14 June 1997, Caxambu, Brazil).

[177] M.V. Jankovic, Quantum Tsallis entropy and projective measurement, preprint (2009), 0904.3794 [physics.data-an].

[457] L. Velazquez and F. Guzman, Softening the extensive postulates, preprint (2001) [cond-mat/0107441].

26

B.H. Lavenda and J. Dunning-Davies, Qualms concerning Tsallis’s use of the maximumentropy formalism, preprint (2003) [cond-mat/0312132].

Q.A. Wang, Maximizing entropy change for nonequilibrium systems, preprint (2003) [cond-mat/0312329].

[899] S. Umarov and C. Tsallis, \textit{Limit distribution in the q-CLT for \(q \geq 1\) can not have a compact support,} preprint (2010), 1012.1814 [cond-mat.stat-mech].

[900] S. Umarov and C. Tsallis, \textit{The limit distribution in the q-CLT for \(q \geq 1\) is unique and can not have a compact support,} J. Phys. A \textbf{49}, 415204 (2016) (14 pages), doi: 10.1088/1751-8113/49/41/415204

[906] H. Suyari and T. Wada, \textit{Multiplicative duality, q-triplet and \((\mu, \nu, q)\)-relation derived from the one-to-one correspondence between the \((\mu, \nu)\)-multinomial coefficient and Tsallis entropy \(S_q\),} Physica A \textbf{387}, 71-83 (2007).

M. Marino, Power-law distributions and equilibrium thermodynamics, preprint (2006) [cond-mat/0605644].

S. Furuichi and M. Abdel-Aty, Tsallis entropies and their theorems, properties and applications, Chapter 1 of Aspects of Optical Sciences and Quantum Information, ed. M Abdel-Aty (Research Signpost, 2007), in press.

G.B. Bagci, The physical meaning of Renyi relative entropies, preprint (2007) [cond-mat/0703008].

T. Oikonomou, Tsallis, Renyi and nonextensive Gaussian entropy derived from the respective multinomial coefficients, Physica A 386, 119-134 (2007).

[1334] G.P. Papaioannou, C. Dikaikos, A. Dramountanis, D.S. Georgiadi and P.G. Papaioannou, Using nonlinear stochastic and deterministic (chaotic tools) to test the EMH of two electricity markets; the case of Italy and Greece, preprint (2017), arxiv 1711.10552

[1440] T. Yamano, Universality of thermodynamical Legendre transform structure against the statistical entropy and the expectation value, Proceeding of the meeting on Quantum Theory of Thermo-field and its Applications, Soryushiron Kenkyu (Kyoto) 103, 104-107 (2001)[in Japanese].

[1457] H. Hasegawa, Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems, preprint (2009), 0912.0521 [cond-mat.stat-mech].

[1461] X. Feng, Using harmonic mean to replace Tsallis q-average, preprint (2010), 1002.4254 [cond-mat.stat-mech].

[1462] X. Feng, The Tsallis entropy and the Boltzmann entropy applicable to the same classic generalized system, World Chinese Forum on Science of General Systems (WCFSGS) 6 (S1), Total No. 49 (2010) [ISSN 1936-7260].

[1727] N.P. Shah, Entropy maximisation and queues with or without balking, Doctoral Thesis (School of Electrical Engineering and Computer Science Faculty of Engineering and Informatics, University of Bradford, 2014).

[1753] F. Pavese, *On the definition of the measurement unit for extreme quantity values: Some considerations on the case of temperature and the Kelvin scale*, archiv 1612.07161.

What can (partition) logic contribute to information theory?

J. Li and H. Cao, Emergence of Tsallis statistics as a consequence of invariance, preprint (2017), 1703.03361 [cond-mat.stat-mech].

V. Patrascu, Shannon entropy for imprecise and under-defined or over-defined information, 25th Conference on Applied and Industrial Mathematics, CAIM 2017 (Iasi, Romania, September 14-17, 2017), 1709.04729 [cs.IL].

A. Di Vita, Exponential or power law? How to select a stable distribution of probability in a physical system, preprint (2017), 1711.07811 [physics.class-ph].

68
Two-parameter functional of entropy Sharma-Mittal

80

R.S. Mendes and C. Anteneodo, Comment on ”Anomalous spreading of power-law quantum wave packets”, preprint (2000) [cond-mat/0003366].

K. Holik, G.M. Bosyk and G. Bellomo, Quantum information as a non-Kolmogorovian generalization of Shannon’s theory, Entropy 17, 7349-7373 (2015), doi:10.3390/e171117349

[2318] V. Svoboda, Generalized stochastic processes with applications to financial markets, Master Thesis (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, 2016).

[2327] F. Li, Modelling the stock market using a multi-scale approach, Master Thesis (University of Leicester, School of Management, University of Leicester, 2017).

A.R. Vasconcellos, J.G. Ramos and R. Luzzi,
Unconventional predictive statistical mechanics II: Theory and experiment and "Path to sufficiency",

R. Luzzi, A.R. Vasconcellos and J.G. Ramos,
Non-equilibrium statistical mechanics of complex systems: An overview,

M. Shiino,
Nonlinear Fokker-Planck equation exhibiting bifurcation phenomena and generalized thermostatistics,

M. Shiino,
Nonlinear Fokker-Planck equations with and without bifurcations and generalized thermostatistics,

M. Shiino,
Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its applications to the self-gravitating system,

M. Shiino,
Generalized entropies and associated free energies characterized by nonlinear Fokker-Planck equations,
communicated at the Research Institute of Mathematical Science Workshop on Mathematical Aspects of Generalized Entropies and their Applications (7-9 July 2009, Kyoto).

M. Shiino,
Nonlinear Fokker-Planck equations associated with generalized entropies: Dynamical characterization and stability analyses,

J. Luczka and B. Zaborek,
Brownian motion: A case of temperature fluctuations,

F. Brouers and O. Sotolongo-Costa,
Generalized fractal kinetics in complex systems (application to biophysics and biotechnology),

M. Ausloos and R. Lambiotte,
Brownian particle having a fluctuating mass,

B. Wang, X. Zhang, Y. Sun, Z. Qu and X. Li,
The transport phenomenon of inertia Brownian particle in periodic systems with non-Gaussian noise,

R.S. Gonzalez,
Difusao anomala: Transicao entre os regimes localizado e estendido na caminhada do turista unidimensional,
Masther Thesis (Unuversity of Sao Paulo, Ribeirao Preto, August 2006).

P. Troncoso, O. Fierro, S. Curilef and A.R. Plastino,
A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions,

A. Fronczak, P. Fronczak and J.A. Holyst,
Microscopic explanation of non-Debye relaxation for heat transfer,

V. Schwammle, E.M.F. Curado and F.D. Nobre,
A general nonlinear Fokker-Planck equation and its associated entropy,

V. Schwammle, F.D. Nobre and E.M.F. Curado,
Consequences of the H-theorem from nonlinear Fokker-Planck equations,

V. Schwammle, E.M.F. Curado and F.D. Nobre,
Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations,

G. Sicuro, P. Rapcan and C. Tsallis,
Nonlinear inhomogeneous Fokker-Planck equations: entropy and free-energy time evolution,

P. Rapcan, G. Sicuro and C. Tsallis,
Free-energy formalism for inhomogeneous nonlinear Fokker-Planck equations,
Proceedings of the 31st International Colloquium in Group Theoretical Methods in Physics, Eds.

R.S. Wedemann, A.R. Plastino, and C. Tsallis,
Curl forces and the nonlinear Fokker-Planck equation,

V.T.F. de Luca,
Equacao de Fokker-Planck nao-linear: Evolucao temporal na presenca de forca rotacional e potencial assimetrico,
Master Thesis (Instituto de Matematica e Estatistica, Universidade do Estado do Rio de Janeiro, 2018).

A.R. Plastino, R.S. Wedemann, E.M.F. Curado, F.D. Nobre and C. Tsallis,
Nonlinear drag forces and the thermostatistics of overdamped motion,

V.T.F. de Luca, R.S. Wedemann and A.R. Plastino,
Neuronal asymmetries and Fokker-Planck dynamics,
International Conference on Artificial Neural Networks: Artificial Neural Networks and Machine Learning,
Springer Lecture Notes in Computer Science 11141, 703-713 (2018).

J. Du,
Possible dynamics of the Tsallis distribution from a Fokker-Planck equation (I),
preprint (2009), 0905.4310 [cond-mat.stat-mech].

M.A. Fuentes and M.O. Caceres,
Computing the non-linear anomalous diffusion equation from first principles,

[2619] M. Proks, Analysis of financial time series, Doctor Thesis (Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, 2017).

P.D. Batista, I.C. Marques, L.H. de Almeida Fauth and M.O.R. Brandao, *Web of Science: showing a bug today that can mislead scientific research output prediction*, SAGE Open, 1-7 (2018).

A.C. Bertuola and M.P. Pato, *Random matrix ensembles and the extensivity of the S_q entropy*, 1110.2948 [cond-mat.stat-mech].

On the time evolution of the entropic index

R. Jaganathan and S. Sinha,

M. Ibl, O. Svoboda and M. Siegert,

G.F.J. Ananos, F. Baldovin and C. Tsallis,

R. Jaganathan and S. Sinha,

A. Prestes,

R. Ishizaki and M. Inoue,

R. Ishizaki and M. Inoue,

U. Tirnakli and C. Tsallis,

G.F.J. Ananos, M.B.S. Casas, J.M.P. Rojas and R.A.H. Enriquez,

G.F.J. Ananos and C. Tsallis,

M. Coraddu, M. Lissia and R. Tonelli,

R. Tonelli,

R. Tonelli and M. Coraddu,

A. Celikoglu and U. Tirnakli,

S. Datta, A. Sharma and R. Ramaswamy,

R. Tonelli,

A. Celikoglu,

G. Lukes-Gerakopoulos, N. Voglis and C. Efthymiopoulos,

G. Lukes-Gerakopoulos, N. Voglis and C. Efthymiopoulos, in

S.T.R. Pinho and R.F.S. Andrade,

Critical models

crisis of 1997 using q-analysis

chaos

bagliligi

edge of chaos

edge of chaos

en el borde del caos: Mapa de Kaplan-Yorke [Ensemble average and the nonextensivity in the edge of chaos: Kaplan-Yorke map]

Nonextensivity

Kaplan-Yorke map

standard map

Power law sensitivity to initial conditions for abelian directed self-organized

q-deformed nonlinear map family at the

Chaos thresholds of the

Numerical study of the oscillatory convergence to the attractor at the edge of chaos,

Convergence to the Critical Attractor at Infinite and Tangent Bifurcation Points, preprint (2005) [nlin.CD/0509030].

Statistical descriptions of nonlinear systems at the onset of chaos,

Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps,

Media de ensembles y la no extensividad en el borde del caos: Mapa de Kaplan-Yorke [Ensemble average and the nonextensivity in the edge of chaos: Kaplan-Yorke map], Anales Cientificos 78 (2), 124-129 (2017), doi: http://dx.doi.org/10.21704/ac.v78i2.1048

A. Prestes, Thermodynamic nonextensivity and elastoplasticity: Determining the Tsallis entropic index \(q \) for a SOC system by the multifractal function \(f(\alpha) \), preprint (1999).

G. Papadakis, F. Vallianatos and P. Sammonds, _Non-extensive statistical physics applied to heat flow and the earthquake frequency-magnitude distribution in Greece_, Physica A 456, 135-144 (2016), doi: http://dx.doi.org/10.1016/j.physa.2016.03.022

Phase transitions in self-gravitating systems

P.-H. Chavanis,

Z. Chen and X. Xu, Multifractality can be a universal signature of phase transitions, preprint (2013), 1304.3189 [cond-mat.stat-mech].

N. Komatsu and S. Kimura,

A. Ishikawa and T. Suzuki,

S.H. Hansen and B. Moore,

L.G. Cabral-Rosetti, T. Matos, D. Nunez, R. Sussman and J. Zavala,

E.P. Bento, J.R.P. Silva and R. Silva,

G.A. Mamon, A. Biviano and G. Boue,

S.H. Hansen, D. Egli, L. Hollenstein and C. Salzmann,

Dark matter distribution function from non-extensive statistical mechanics, New Astronomy 10, 379 (2005).

N. Komatsu, Alternative dark energy from the holographic equipartition law with a modified Renyi entropy: A thermodynamic scenario for the cosmological constant problem, preprint (2016), 1611.04084 [gr-qc].

[3682] F. Verheest, Comment on “Head-on collision of electron acoustic solitary waves in a plasma with nonextensive hot electrons”, preprint (2012), 1204.1478 [physics.space-ph].

[3911] G. Livadiotis and D.J. McComas, Non-equilibrium stationary states in the heliosphere and the influence of pick-up ions, in Pickup Ions Throughout the Heliosphere and Beyond 1302, 70-76 (2010).

[4009] D. Tlusty, A Study of open charm production in p+p collisions at STAR, Doctor Thesis (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, 2014).

[4016] ALICE Collaboration, Production of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Eur. Phys. J. C 77, 389 (2017) (17 pages), doi: 10.1140/epjc/s10052-017-4943-1

[4017] ALICE Collaboration, K^*(892)0 and Φ(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 95, 064606 (2017).

[4021] F.A.W. Hermsen, Go with the flow – Probing the strongest magnetic field in the Universe, Bachelor Thesis (Physics and Astronomy, Utrecht University, 2018).

[4026] S.Y.J.P. Hewage, Transverse momentum evolution of hadron-V^0 correlations in pp collisions at $\sqrt{s} = 7$ TeV, Doctor Thesis (Department of Physics, University of Houston, 2015).

[4043] ALICE Collaboration, Production of the $\rho(770)^0$ meson in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, preprint (2018), 1805.04365 [nucl-ex].
[4050] E. Appelt, Measurements of charged-particle transverse momentum spectra in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and in pPb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS detector, Doctor Thesis (Vanderbilt University, Nashville, Tennessee, 2014).

[4124] S. Schuchmann, Modification of K_S^0 and Λ ($\bar{\Lambda}$) transverse momentum spectra in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE, Doctor Thesis (Goethe University Frankfurt, Germany, Springer, 2017).

[4148] The ALICE Collaboration, Production of $\Omega(1385)^+\pm$ and $\Xi(1530)^0$ in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV, Eur. Phys. J. C (2015) 75, 1 (2015), doi: 10.1140/epjc/s10052-014-3191-x
[4149] ALICE Collaboration, $\Omega(1385)^±$ and $\Xi(1530)^0$ in p – Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, preprint (2017), 1701.07797 [nucl-ex].
[4167] M.S. Kayl, Measurement of the charged particle density with the ATLAS detector: First data at $\sqrt{s} = 0.9, 2.36$ and 7 TeV, Doctor Thesis (University of Amsterdam, 2016).
[4169] CMS Collaboration, Strange particle production in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV, J. High Energy Phys. 05, 064 (2011) (40 pages).

157

[4184] E. Megias, D.P. Menezes and Airton Deppman, Noneextensive thermodynamics with finite chemical potentials and protoneutron stars, EPJ Web of Conferences 80, 00040 (2014) (6 pages), doi: 10.1051/epjconf/20148000040

Is strangeness chemically equilibrated?

M. Puccio, Production of (anti-)hypernuclei at LHC energies with ALICE, EPJ Web of Conferences 171, 14009 (2018), doi: https://doi.org/10.1051/epjconf/201817114009

M. Puccio, Study of the production of nuclei and anti-nuclei at the LHC with the ALICE experiment, Doctor Thesis (Dipartimento di Fisica, Universita di Torino, 2017).

F. Bock, Measurement of direct photons and neutral mesons in small collisions systems with the ALICE experiment at the LHC, Doctor Thesis (Combined Faculties for the Natural Sciences and for Mathematics of Ruperto-Carola University of Heidelberg, Germany, 2017).

ALICE Collaboration, Production of deuterons, tritons, \(^{3}\)He nuclei and their anti-nuclei in pp collisions at \(\sqrt{s} = 0.9, 2.76\) and 7 TeV, Phys. Rev. C 97, 024615 (2018).

181

[4996] M. Biyajima, T. Mizoguchi and N. Suzuki (ALICE Collaboration), What is the implication of the observation by CDF Collaboration of the transverse momentum spectrum at \(\sqrt{s} = 1.96 \text{ TeV} \)?, preprint (2016), 1604.01264 [hep-ph].

[4998] A. Badala, Overview of ALICE results on hadronic resonance production, EPJ Web of Conferences 142, 01004 (2017) (6 pages), doi: 10.1051/epjconf/201714201004

[5078] G. Wilk, *Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC*, communicated at the IX Workshop on Correlation and Fentoscopy (5-8 November 2013, Acireale, Italy).

[5092] CMS Collaboration, Measurement of Λ_b cross section and the Λ_b to Λ_h ratio with J/ψ Λ decays $\sqrt{s} = 7\text{TeV}$, Phys. Lett. B 714, 136-157 (2012).

D. Prenga, M. Ifti and S. Kovaci, Extended views on the study of out-of-equilibrium opinion and opinion-like systems, The International Physics Conference Tirana 2015, 43-48 (University of Tirana, Faculty of Natural Sciences, Department of Physics, 2015).

X.J. Feng, The Tsallis Entropy Barrier or the Roundness Barrier Based Dynamic Stochastic Resonance – A New Family of SR?, preprint (2008), 0808.2286 [cond-mat.stat-mech].

A.C. Carli, M.A.T. Figueiredo, M. Bicego and V. Murino, Generative embeddings based on Rician mixtures for kernel-based classification of magnetic resonance images, Neurocomputing 123, 49-59 (2014), http://dx.doi.org/10.1016/j.neucom.2013.02.037

M. Ishihara, Effects of Tsallis distribution on parametric resonance in chiral phase transitions, preprint (2016), 1604.00871 [hep-ph].

A theory of non-gaussian option pricing

Financial market decisions

Wavelet and entropy analysis, Entropy, (World Scientific, Singapore, 2005), page 306 [cond-mat/0501395].

extreme returns

Option market

multi-timescale memory

A non-Gaussian stock price model: Options, credit and a multi-timescale memory

[5477] D.R. Bickel, *Time-series intermittency quantified by generalized entropy: An alternative to multifractal analysis*, communicated at the "International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics" (Denton, Texas, 3-6 April 2000).

[5507] Z. Liu, Z. Han, Y. Zhang and Q. Zhang, Multiwavelet packet entropy and its application in transmission line fault recognition and classification, IEEE Transactions on Neural Networks and Learning Systems 25 (11), 2043-2052 (2014), doi: 0.1109/TNNLS.2014.2430386

[5511] D. Strzalka, Initial results of testing some statistical properties of hard disks workload in personal computers in terms of non-extensive entropy and long-range dependencies, Entropy 19, 335 (2017) (19 pages), doi: 10.3390/e19070335

[5524] A.C. Sparavigna, Graphs of q-exponentials and q-trigonometric functions, HAL hal-01377262 (2016), doi: https://hal.archives-ouvertes.fr/hal-01377262

210

A generalized gamma model associated with a Bessel function, Integral Transforms and Special Functions 22 (9), 631-645 (2011).

R.S. Mendes and I.T. Pedron, Nonlinear differential equations based on nonextensive Tsallis entropy and physical applications, preprint (1999), [cond-mat/9904023].

A. Plastino and M.C. Rocca, Possible divergences in Tsallis’ thermostatistics, EPL 104, 60003 (2014).

A. Plastino and M.C.Rocca, Peculiarities of some classical variational treatments using the maximum entropy principle, Revista Mexicana de Fisica 64, 603-607 (2018).

A. Plastino and M.C. Rocca, Reply to Comment on “Possible divergences in Tsallis’ thermostatistics” by Plastino and Rocca, EPL (2014), in press.

[5630] E. Marcon, *Practical estimation of diversity from abundance data*, (2015), HAL Id: hal-01212435 https://hal-agroparistech.archives-ouvertes.fr/hal-01212435

226
M. Fleischer, Scale invariance and symmetry relationships in non-extensive statistical mechanics, preprint (2005) [cond-mat/0501293].

[5987] Ping Li, A very efficient scheme for estimating entropy of data streams using compressed counting, preprint (2008), 0808.1771 [cs.DS].

Coupled-Cluster Molecular Properties Using the q-Integral Method

Molecular properties calculations using the q-Integral method in the Hartree-Fock approach, preprint (2007).

R. Custodio, G.S.T. de Morais and M.G. Rodrigues, A grid-based variational method to the solution of the Schrödinger equation: the q-exponential and the near Hartree-Fock results for the ground state atomic energies, J. Molecular Modeling 24, 188 (2018), doi: https://doi.org/10.1007/s00894-018-3715-7

H. Hasegawa, Nonextensive aspects of small-world networks.

T.C. Nunes, S. Brito, L.R. da Silva and C. Tsallis.

L.R. da Silva, Redes independente de escala e mecanica estatistica nao extensiva, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

S.G.A. Brito, L.R. da Silva and C. Tsallis, Role of dimensionality of complex networks with metrics: Connection with nonextensive statistical mechanics, communicated at the International School of Complexity (Erice, 2015).

232

[6330] F. Nie, A three-level thresholding technique based on nonextensive entropy and fuzzy partition with artificial bee colony algorithm, Internat. J. Hybrid Information Technology 8 (7), 1-10 (2015), doi: http://dx.doi.org/10.14257/ijhit.2015.8.7.01

M.M. DiStasio and C.T. Bock, *Data packet collection and monitoring computer system for e.g. security system functions, has wireless access point and data collection platform provided to calculate entropy of determined estimate of received signal strength*, Assignee: Syracuse Res. Corp., US2010226255-A1 (2010).

X. Bai, J. Chen and H. Li, *Local corrosion detecting method for horizontal well sleeve in oil field, involves outputting sleeve local corrosion information in neuron network according to calculating result of input Tsallis wavelet energy entropy*, Assignee: Harbin Inst Technology, CN101650327-A (2010).

X. Li and Q. Xu, *Monte Carlo illumination self-adaptive method for image processing field, involves sampling voltage of pixel when value is larger than threshold value, and utilizing sampling points to increase another threshold value according to rule*, Patent Number(s): CN102289842-A, Patent Assignee Name(s) and Code(s): UNIV TIANJIN(UTIJ-C)

Expectation values and variance based on
approach to the block entropy modeling and optimization
A. Nakib, H. Oulhadj and P. Siarry,
I. Kilic and O. Kayacan,
S. Susan and M. Hanmandlu,
G.A. Wachs-Lopes, W. Fukuma and P.S. Rodrigues,
M.V. Jankovic, T. Gajic and B.D. Reljin,
Y. Li, X. Fan and G. Li,
P. Drobinski, C. Coulais and B. Jourdier,
M. Al-Hasan and R.R. Nigmatullin,
G.A.G. Cidade, C. Anteneodo, N.C. Roberty and A.J. Silva Neto,

Are all highly liquid securities within the same class?

On superstatistical multiplicative-noise processes

Physical picture of the insurance market

Insurance pricing in small size markets

Entropic nonextensivity as a measure of time series complexity

Are all highly liquid securities within the same class?

On superstatistical multiplicative-noise processes

Physical picture of the insurance market

Insurance pricing in small size markets

Entropic nonextensivity as a measure of time series complexity

[6541] L. Bai, L. Rossi, H. Bunke and E.R. Hancock, Attached graph kernels using the Jensen-Tsallis q-differences, Lecture Notes in Computer Science 8724 LNAI, Issue PART 1, 99-114 (2014) [European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014; Nancy; France; 15 September 2014 through 19 September 2014; Code 107499].

frequency, kHz and MHz electromagnetic anomalies prior to the L'Aquila earthquake as pre-seismic ones - Part 2, Natural Hazards and Earth System Sciences 10, 275-294 (2009).

[6639] L. Telesca, A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22(2), 87-93 (2010).

D. Li and Y. Yang, Impact of time delay on population model with Allee effect, Communications in Nonlinear Science and Numerical Simulation 72, 282-293 (2019).

K. Kayser, J. Gortler, S. Borkenfeld and G. Kayser, How to measure diagnosis-associated information in virtual slides, Diagnostic Pathology 6 Suppl. 1 (S9), (2011) (9 pages).

R.S. Wedemann, *Sistemas complexos, associatividade, processos mentais e a simbolizacao*, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

D. Stys, J. Korbel, R. Rychtarikova, D. Soloviov, P. Cisar and J. Urban, Point information gain entropy and point information gain entropy density as measures of semantic and syntactic information of multidimensional discrete phenomena, preprint (2015), 1501.02891 [physics.data-an].

S. Sula, E. Vuka and D. Prenga, Alternative analysis of hydrologic data series using empiric mode decomposition algorithms, The International Physics Conference Tirana 2015, 212-215 (University of Tirana, Faculty of Natural Sciences, Department of Physics, 2015).

P.M. Locatelli, Proposta de um instrumento economico para viabilizar o pagamento por servicos ambientais urbanos aos catadores de materiais reciclaveis, Capitulo 21, preprint (2017).

276