NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS: BIBLIOGRAPHY *

January 8, 2019

GENERAL THEORY

Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–17, 19–568, 570–1196, 1198–1814]
H-theorem and irreversibility: [1815–1849]
Ehrenfest theorem, von Neumann equation: [3, 1850–1856]
Quantum statistics: [1857–1966]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1870, 1967–2061]
Langevin and Fokker-Planck equations: [1819–1861, 2040–2060, 2062–2473]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 2474–2491]
Poisson equation: [2492–2501]
Callen identity: [2502]
Ising transmissivity: [2503]
Classical equipartition principle: [2504–2506]
Connection with quantum uncertainty: [2507–2545]
Connection with Fisher information measure: [2546–2558]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 52–60, 1937, 2559–2950]
Connection with general relativity, cosmology, dark energy, string theory: [2547, 2951–3045]
Connection with quantum groups and quantum mechanics: [3046–3090]
Connection with wavelets; Signal processing; EEG: [3091–3170]
Connection with quantum correlated many-body problems: [3171–3181]
Connection with the Gentile and the exclusion Haldane statistics: [3182–3185]
Connection with finite systems: [2474, 3182]
Rigorous results (generalized entropy and thermostatistics): [2562–2567, 3186–3191]
Integral transformations (Hilhorst and Prato formulae): [1859, 2474, 3192–3194]

ONE-BODY SYSTEMS

Two-level system: [1, 3195]
Harmonic and anharmonic oscillators: [943–952, 3190–3197]
Free particle: [3198]
Larmor precession: [1852]
Rigid rotator: [3193–3201]
Hydrogen and hydrogen-like atoms: [1119–1124, 1126, 3202–3227]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 7038 articles from 13546 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [2474–2504, 3192–3253]
Independent spin paramagnet, Landau magnetism: [3051–3057, 3254–3261]
Black-body radiation and photonic systems: [3262–3314]
d = 1 Ising ferromagnet: [3315–3319]
d ≥ 2 Ising and other ferromagnets: [2503, 3320–3362]
Infinite-range Ising ferromagnet: [3363]
Potts ferromagnet, Molecular field approximation: [2502, 3337–3367]
Percolation: [3368–3370]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [3371–3426]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [2022, 2492, 2547, 3427–3506]
Lévy-like and correlated anomalous diffusion: [17, 2125, 2126, 2179–2213, 3567–3630]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [2492, 3612–3620, 3622–3629, 3631–3882]
Solar neutrinos; High energy physics: [3883–4364]
Ferrofluid-like materials, Lennard-Jones fluids: [3354, 4365–4386]
Solitons: [4387, 4388]
Plasma (electron velocity distribution, magnetohydrodynamics): [4389–4727, 4729–4803]
Glass, Spin-glass: [4804–4836]
Superfluid helium; Bose-Einstein condensation: [4837–4856]
Test of Boltzmann-Gibbs thermostatistics: [2955, 3284, 3285]
Cosmic rays; Elementary particles: [4333, 4857–5073]
Biological systems: Microemulsions; Liquid crystals: [5074–5173]
Stochastic resonance; Brownian motors: [5174–5211]
Connection with the Theory of perceptions: [17, 18]
Connection with the Theory of finances: [6, 3632, 5195–5383]
Consistent testing; Statistical inference; Theory of probabilities: [528–570, 2018, 5385–5438]
Theory of functions; Geometric approaches: [1197, 1200–1324, 4508, 5439–5658]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [2041, 3348, 5659–5976]
Neural and other networks: [5139, 5140, 5977–6082]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [3091–3115, 6083–6617]
Geophysics: [3114, 3115, 6153, 6618–6687]
Medicine: Tomography: [3116–3123, 6083, 6355, 6688–6740]
Symbolic dynamics, linguistics, philology, cognitive sciences, hydrology, ecology: [2603–2645, 5607, 6741–6883]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [476, 6884–7038]
References

E.M.F. Curado, *Condicoes para a existencia de estaticistas generalizadas*, communicated at the XX Encontro Nacional de Fisica da Matéria Condensada (10-14 June 1997, Caxambu, Brazil).

[162] W.S. Nascimento, Sobre uma adjuncao entre a Teoria Matematica da Comunicacao e a Teoria Quantica, communicated at Seminarios de Pesquisa (PPGF, Instituto de Fisica, Universidade Federal da Bahia, 2017).

R.L. Mendonca Sales Filho, \textit{A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values}, Doctor Thesis (Universidade Federal de Pernambuco, Engenharia de Producao, Recife, Brazil, 2016).

T. Deesuwan, Towards thermodynamics of quantum systems away from equilibrium, Doctor Thesis (Department of Physics, Imperial College, London, 2016).

Q.A. Wang, L. Nivanen, M. Perezil and A. Le Mehaute, How to proceed with nonextensive systems at equilibrium?, preprint (2003) [cond-mat/0304178].

A. Rodriguez, V. Schwammle and C. Tsallis, *Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as $N \to \infty$ limiting distributions*, JSTAT P09006 (2008).

S. Umarov and C. Tsallis, *Limit distribution in the q-CLT for $q \geq 1$ can not have a compact support*, preprint (2010), 1012.1814 [cond-mat.stat-mech].

C. Vignat and P.W. Lamberti, *Carinena orthogonal polynomials are Jacobi polynomials*, preprint (2009), 0902.0451 [math.CA].

T. Oikonomou and G.B. Bagci, Complete versus incomplete definitions of the deformed logarithmic and exponential functions, preprint (2009) 0907.4067 [cond-mat.stat-mech].

Q. A. Wang, L. Nivanen and A. Le Mehaute, A composition of different q nonextensive systems with the normalized expectation based on escort probability, preprint (2006) [cond-mat/0601255].

A. I. Olemskoi, Generalized thermostatistics based on multifractal phase space, preprint (2006) [cond-mat/0601665].

[1214] A.M. Mathai, Some recent results connecting many areas, communicated at the International Conference on Mathematical Sciences (3-5 January 2011, Pala-Kerala, India).

G.L. Gilardoni, *On a Gel’fand-Yaglom-Peres theorem for f-divergences*, preprint (2009), 0911.1934 [cs.IT].

H. Hasegawa, *Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems*, preprint (2009), 0912.0521 [cond-mat.stat-mech].

X. Feng, *Using harmonic mean to replace Tsallis q-average*, preprint (2010), 1002.4254 [cond-mat.stat-mech].

V. Kumar and H.C. Taneja, Non-additive entropy measure and record values, Applied Mathematics Information Sciences 9 (3), 1541-1548 (2015).

What can (partition) logic contribute to information theory?

Shannon entropy reinterpreted

Emergence of Tsallis statistics as a consequence of invariance

Quantum treatment of Verlinde’s conjecture in a Tsallis framework

Generalized Shannon’s entropies in position and momentum spaces

Analysis simulation of interaction information in chaotic systems of fractional order

New generalization of von Neumann relative entropy

Information theory and maximum entropy principles in non-equilibrium statistical physics

Relativistic treatment of Verlinde’s emergent force in Tsallis statistics

A mechanism producing power law etc. distributions

A joint representation of Renyi’s and Tsallis’ entropy with application in coding theory

Monogamy of correlations and entropy inequalities in the Bloch picture

Shannon entropy for imprecise and under-defined or over-defined information

Some inequalities in information theory using Tsallis entropy

Results related to exponential entropy

Hidden correlations entailed by additive Tsallis’ scenario

Emergence of Tsallis statistics as a consequence of invariance

Towards an information geometric characterization/classification of complex systems. II. Critical parameter values from the \((e,d) \)-manifold

Renyi’s and Tsallis’ entropy with application in coding theory

Probability distribution function of complex systems

Quantile based Tsallis entropy in residual lifetime

An analytical representation of the entropy for macroscopic system in thermal non-equilibrium

Monogamy of correlations and entropy inequalities in the Bloch picture

Emergence of Tsallis statistics as a consequence of invariance

Results related to exponential entropy

Results related to exponential entropy

[1908] F.A. Wudarski, Non-Markovian dynamics in the open quantum systems, Doctor Thesis (Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, 2015).

[2287] V. Svoboda, *Generalized stochastic processes with applications to financial markets*, Master Thesis (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, 2016).

[2358] J. Du, Possible dynamics of the Tsallis distribution from a Fokker-Planck equation (I), preprint (2009), 0905.4310 [cond-mat.stat-mech].

[2581] M. Proks, Analysis of financial time series, Doctor Thesis (Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, 2017).

[2663] A.M.C. de Souza, Estudos sobre o ensemble de Wishart-Tsallis de matrizes aleatorias, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

A.C. Bertuola and M.P. Pato, Random matrix ensembles and the extensivity of the S_q entropy, 1110.2948 [cond-mat.stat-mech].

O. Pfaffel, Eigenvalues of Large Random Matrices with Dependent Entries and Strong Solutions of SDEs, Doctor Thesis (Technische Universität München, Lehrstuhl für Mathematische Statistik, 2013).

A. Robledo, Comment on “Temporal scaling at Feigenbaum points and nonextensive thermodynamics” by P. Grassberger, preprint (2005) [cond-mat/0510293].

C. Tsallis, Comment on “Temporal scaling at Feigenbaum points and nonextensive thermodynamics” by P. Grassberger, preprint (2005) [cond-mat/0511213].

[2721] A. Prestes, Thermodynamic nonextensivity and elastoplasticity: Determining the Tsallis entropic index q for a SOC system by the multifractal function f(α), preprint (1999).

G. Papadakis, F. Vallianatos and P. Sammonds, Non-extensive statistical physics applied to heat flow and the earthquake frequency-magnitude distribution in Greece, Physica A 456, 135-144 (2016), doi: http://dx.doi.org/10.1016/j.physa.2016.03.022

G. Michas, Generalized statistical mechanics description of fault and earthquake populations in Corinth rift (Greece), Doctor Thesis (University College London, 2016).

[2934] T.D. Frank, Chaos from nonlinear Markov processes: Why the whole is different from the sum of its parts, Physica A 388, 4241-4247 (2009).

[3111] M.H.A. Hassan *Quantifying heteroskedasticity metrics*, Doctor Thesis (Faculty of Science and Technology, Institute for Intelligent Systems Research and Innovation, Deakin University, Australia, 2016).

K. Fu, J. Qu, Y. Chai and T. Zou, Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals, Biomedical Signal Processing and Control 18, 179-185 (2015).

Y.A. Pykh, Pairwise interactions origin of entropy functions, preprint (2015), 1506.05731

119

Gulec, Oset fraktallarin yogun madde fiziginde uygulamaları, Doctor Thesis (Ege University, Izmir, Turkey, February 1997).

H. Hasegawa, Specific heat and entropy of N-body nonextensive systems: The ordinary average and q-average, preprint (2010), 1002.4052 [cond-mat.stat-mech].

Z. Chen and X. Xu, Multifractality can be a universal signature of phase transitions, preprint (2013), 1304.3189 [cond-mat.stat-mech].

[3797] A. Walczak, Patient treatment prediction by continuous time random walk inside complex system, MATEC Web of Conferences 210, 02006 (2018), doc: https://doi.org/10.1051/matecconf/201821002006

G. Livadiotis and D.J. McComas, Non-equilibrium stationary states in the heliosphere and the influence of pick-up ions, in Pickup Ions Throughout the Heliosphere and Beyond 1302, 70-76 (2010).

B. Layden, Second-order nonlinear processes in warm unmagnetized plasmas, Doctor Thesis (School of Physics, Faculty of Science, University of Sydney, December 2013).

[3954] ALICE Collaboration, Production of π^0 and η mesons up to high transverse momentum in pp collisions at 2.76 TeV, Eur. Phys. J. C 77, 339 (2017), doi: 10.1140/epjc/s10052-017-4890-x
[3955] ALICE Collaboration, Production of $\Sigma(1385)^+$ and $\Xi(1530)^0$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Eur. Phys. J. C 77, 389 (2017) (17 pages), doi: 10.1140/epjc/s10052-017-4943-1
[3956] ALICE Collaboration, K*$(892)^0$ and Φ(1020)0 meson production at high transverse momentum in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 95, 064606 (2017).
[3960] F.A.W. Hermsen, Go with the flow – Probing the strongest magnetic field in the Universe, Bachelor Thesis (Physics and Astronomy, Utrecht University, 2018).
[3965] S.Y.J.P. Hewage, Transverse momentum evolution of hadron-V^0 correlations in pp collisions at $\sqrt{s} = 7$ TeV, Doctor Thesis (Department of Physics, University of Houston, 2015).

References

[4085] B.C. Li, G.X. Zhang and Y.Y. Guo, Transverse momentum spectra of \(K_S^0 \) and \(K^{*0} \) at midrapidity in \(d+Au \), Cu+Cu and \(p-p \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV, Advances in High Energy Physics 684950 (2015) (8 pages), http://dx.doi.org/10.1155/2015/684950

[4086] The ALICE Collaboration, Production of \(\Sigma(1385)^\pm \) and \(\Xi(1530) \) in proton-proton collisions at \(\sqrt{s_{NN}} = 7 \) TeV, Eur. Phys. J. C (2015) 75, 1 (2015), doi: 10.1140/epjc/s10052-014-3191-x

[4087] ALICE Collaboration Production of \(\Sigma(1385)^\pm \) and \(\Xi(1530) \) in \(p-Pb \) collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, preprint (2017), 1701.07797 [nucl-ex].

[4096] T.S. Biro and Z. Neda, Dynamical stationarity as a result of sustained random growth, preprint (2016), 1611.06698 [cond-mat.stat-mech].

[4102] ALICE Collaboration, \(K^*(892)^0 \) and \(\Phi(1020) \) production in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV, Phys. Rev. C 91, 024609 (2015) (26 pages).

[4105] M.S. Kayl, Measurement of the charged particle density with the ATLAS detector: First data at $\sqrt{s} = 0.9$, 2.36 and 7 TeV, Doctor Thesis (University of Amsterdam, 2016).

[4122] E. Megias, D.P. Menezes and Airton Deppman, Nonextensive thermodynamics with finite chemical potentials and proto-neutron stars, EPJ Web of Conferences 80, 00040 (2014) (6 pages), doi: 10.1051/epjconf/2014800040

[4140] E.W. Sangaline, Ups and downs with a bit of strange: A STAR analysis of \(\pi/K/p \) spectra at high \(p_T \) in \(\text{Au+Au} \) collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) and its physics implications, Doctor Thesis (University of California, Davis, 2014).

[4494] D.K. Ghosh, P. Chatterjee and U.N. Ghosh,

Nonplanar ion acoustic solitary waves in electron-positron-ion plasma with warm Ions, and electron and positron following q-nonextensive velocity distribution, IEEE Transactions on Plasma Science 41 (5), 1600-1606 (2013).

[4496] G. Mandal, A. Paul, K. Roy and M. Asaduzzaman,

[4498] M. Emanuddin and A.A. Mamun,

[4499] S. Guo, L. Mei and Z. Zhang,

[4500] M. Eghbali and B. Farokhi,

[4501] U.N. Ghosh, P. Chatterjee and S.K. Kundu,

[4502] M. Tribeche, L. Djebarni and R. Amour,

[4503] L.A. Gougam and M. Tribeche,

[4504] L.A. Gougam and M. Tribeche,

[4505] A.S. Bains, M. Tribeche and T.S. Gill,

[4506] A.S. Bains, M. Tribeche and T.S. Gill,

[4507] A.S. Bains, M. Tribeche, N.S. Saini and T.S. Gill,

[4508] H.B. Qiu and S.Q. Liu,

[4509] T.S. Gill, P. Bala and A.S. Bains,

[4510] S. Juneja and P. Bala,

[4511] S. Juneja and P. Bala,

[4512] P. Bala, T.S. Gill, A.S. Bains and H. Kaur,

[4513] O.R. Rufai, A.S. Bains and Z. Ehsan,

[4514] A. Saha, R. Ali and P. Chatterjee,

[4515] Z.Z. Li, H. Zhang, X.R. Hong, D.N. Gao, J. Zhang, W.S. Duan and L. Yang,

[4516] S.A. Shan and H. Saleem,

[4925] A. Badala, Overview of ALICE results on hadronic resonance production, EPJ Web of Conferences 142, 01004 (2017) (6 pages), doi: 10.1051/epjconf/201714201004

in QCD, eds. N.G. Antoniou, F.K. Diakonos and C.N. Ktorides (World Scientific, Singapore, 2003), page 326 [cond-mat/0301521].

189

S. Bouzat and H.S. Wio, Strong enhancement of current, efficiency and mass separation in Brownian motors driven by non Gaussian noises, preprint (2001) [cond-mat/0112304].

D. Prenga, M. Ifti and S. Kovaci, Extended views on the study of out-of-equilibrium opinion and opinion-like systems, The International Physics Conference Tirana 2015, 43-48 (University of Tirana, Faculty of Natural Sciences, Department of Physics, 2015).

X.J. Feng, The Tsallis Entropy Barrier or the Roundness Barrier Based Dynamic Stochastic Resonance – A New Family of SR?, preprint (2008), 0808.2286 [cond-mat.stat-mech].

M. Sheraz, Modele GARCH si masuri ale entropiei in finantie, Doctor Thesis (Romania, 2014)

[5426] Z. Liu, Z. Han, Y. Zhang and Q. Zhang, Multiwavelet packet entropy and its application in transmission line fault recognition and classification, IEEE Transactions on Neural Networks and Learning Systems 25 (11), 2043-2052 (2014), doi: 0.1109/TNNLS.2014.2303086

[5587] H. Suyari and T. Wada, Multiplicative duality, \(q \)-triplet and \((\mu, \nu, q)\)-relation derived from the one-to-one correspondence between the \((\mu, \nu)\)-multinomial coefficient and Tsallis entropy \(S_q \), Physica A 387, 71-83 (2007).

[5589] H. Suyari, Law of multiplicative error and Its generalization to the correlated observations represented by the \(q \)-product, Entropy 15, 4634-4647 (2013), doi:10.3390/e15114634

[5592] M. Tanaka, A sequence of \(q \)-normal distributions obtained by successive \(\tau \)-transformations, communicated at the Research Institute of Mathematical Science Workshop on Mathematical Aspects of Generalized Entropies and their Applications (7-9 July 2009, Kyoto).

[5711] M. Moret, P.G. Pascutti, P.M. Bisch and K.C. Mundim, Determinacao de estrutura de peptideos por otimizacao estocastica (GSA), communicated at XX Encontro Nacional de Fisica da Materia Condensada (10-14 June 1997, Caxambu, Brazil).

[5900] Ping Li, A very efficient scheme for estimating entropy of data streams using compressed counting, preprint (2008), 0808.1771 [cs.DS].

[6063] Z. Szabo, Information theoretical estimators, ITE Toolbox Release 0.51 (December 29, 2013).

[6236] F. Nie, A three-level thresholding technique based on nonextensive entropy and fuzzy partition with artificial bee colony algorithm, Internat. J. Hybrid Information Technology 8 (7), 1-10 (2015), doi: http://dx.doi.org/10.14257/ijhit.2015.8.7.01

[6301] R.S. Sneddon, SNEDDON AND ASSOC INC (SNED-Non-standard), Data value measuring method for electro encephalography data, involves computing attribute for each data subset so that attribute is dependent on data in each subset and attribute is equal to variability of data in each data subset, Patent US2005159919-A1 (2005-540950).

[6315] M.M. DiStasio and C.T. Bock, Data packet collection and monitoring computer system for e.g. security system functions, has wireless access point and data collection platform provided to calculate entropy of determined estimate of received signal strength, Assignee: Syracuse Res. Corp., US2010226255-A1 (2010).

[6318] X. Bai, J. Chen and H. Li, Local corrosion detecting method for horizontal well sleeve in oil field, involves outputting sleeve local corrosion information in neuron network according to calculating result of input Tsallis wavelet energy entropy, Assignee: Harbin Inst Technology, CN101650327-A (2010).

Are all highly liquid securities within the same class?

On superstatistical multiplicative-noise processes.

On multidimensional generalized Cramer-Rao inequalities, uncertainty relations and characterizations of generalized q-Gaussian distributions.

Some properties of generalized Fisher information in the context of nonextensive thermostatistics.

On some interrelations of generalized q-entropies and a generalized Fisher information, including a Cramer-Rao inequality.

Some results on a χ-divergence, an extended Fisher information and generalized Cramer-Rao inequalities.

Entropies et critères entropiques.

On multidimensional generalized Cramer-Rao inequalities, uncertainty relations and characterizations of generalized q-Gaussian distributions.

Are all highly liquid securities within the same class?

On the connection between ARCH time series and non-extensive statistical mechanics.

On discrete stochastic processes with long-lasting time dependent variance. Analytical and numerical analyses.

On the connection between financial processes with stochastic volatility and non-extensive statistical mechanics.

Non-extensivity versus informative moments for financial models: A unifying framework and empirical results.

Are all highly liquid securities within the same class?

Mamta and M. Hanmandlu, A new entropy function and a classifier for thermal face recognition, Engineering Applications of Artificial Intelligence 36, 269-286 (2014).

Mamta and M. Hanmandlu, Multimodal biometric system built on the new entropy function for feature extraction and the refined scores as a classifier, Expert Systems with Applications (2015), in press, doi: http://dx.doi.org/10.1016/j.eswa.2014.11.054

Mamta and M. Hanmandlu, A new entropy function for feature extraction with the refined scores as a classifier for the unconstrained ear verification, J. Electrical Systems Information Technology (2016), in press, http://dx.doi.org/10.1016/j.jestit.2016.10.006

L. Bai, L. Rossi, H. Bunke and E.R. Hancock, Attributed graph kernels using the Jensen-Tsallis q-differences, Lecture Notes in Computer Science 8724 LNAI, Issue PART 1, 99-114 (2014) [European Conference on
Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014; Nancy; France; 15 September 2014 through 19 September 2014; Code 107499.

247

Is there a “true” diversity?

[6631] D. Koutsoyiannis, The scaling properties in the distribution of hydrological variables as a result of the maximum entropy principle, communicated at European Geosciences Union General Assembly (24-29 April 2005, Vienna).

[6881] D. La Vecchia, L. Camponovo and D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization, Computational Statistics and Data Analysis 82, 137-151 (2015).

[6825] I.T. Pedron, M.F. Cornello and C.R. Bach, Extremos de precipitacao e tempos de retorno no Oeste e Sudoeste do Parana, communicated at the XVII Congresso Brasileiro de Meteorologia (Gramado-RS, 2012).

[6826] T. Pedron and M.F. Cornello, Densidades de distribuicao de frequencias de velocidades de vento medio diario e rajadas maximas no Estado do Parana,communicated at the XVII Congresso Brasileiro de Meteorologia (Gramado-RS, 2012).

[6970] D. Bagchi and C. Tsallis, Universal sensitivity to the initial conditions of a d-dimensional Fermi-Pasta-Ulam model including long-range interactions, communicated at the International School of Complexity (2015, Erice).

[7009] I. Bonamassa, Meccanica statistica nonestensiva e sistemi dinamici, Tesi di Laurea di Fisica (Università del Salento, Lecce, 2010).

