NONEXTENSIVE STATISTICAL MECHANICS
AND THERMODYNAMICS: BIBLIOGRAPHY *

October 11, 2018

GENERAL THEORY

Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–711, 713–1099, 1102–1229, 1231–1771]
H-theorem and irreversibility: [1772–1805]
Ehrenfest theorem, von Neumann equation: [3, 1806–1812]
Quantum statistics: [1813–1921]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1826, 1922–2015]
Langevin and Fokker-Planck equations: [1776, 1811, 1817, 1995, 2016–2421]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6, 2422–2439]
Poisson equation: [2440–2449]
Callen identity: [2450]
Ising transmissivity: [2451]
Classical equipartition principle: [2452–2454]
Connection with quantum uncertainty: [2455–2492]
Connection with Fisher information measure: [2493–2505]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9, 49, 55–57, 1892, 2506–2892]
Connection with general relativity, cosmology, dark energy, string theory: [2494, 2893–2982]
Connection with quantum groups and quantum mechanics: [2983–3027]
Connection with wavelets; Signal processing; EEG: [3028–3032, 3034–3106]
Connection with quantum correlated many-body problems: [3107–3117]
Connection with the Gentile and the exclusion Haldane statistics: [3118–3121]
Connection with finite systems: [2422, 3118]
Rigorous results (generalized entropy and thermostatistics): [2509–2514, 3122–3127]
Integral transformations (Hilhorst and Prato formulae): [1815, 2422, 3128–3130]

ONE-BODY SYSTEMS

Two-level system: [1, 3131]
Harmonic and anharmonic oscillators: [926–928, 935, 3126, 3131–3133]
Free particle: [3134]
Larmor precession: [1808]
Rigid rotator: [3129, 3135–3137]
Hydrogen and hydrogen-like atoms: [1100–1102, 1106, 3138–3163]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 6907 articles from 13420 signing (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with nonadditive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [2422, 2452, 3128, 3164–3189]
Independent spin paramagnet, Landau magnetism: [2988, 2991–2994, 3190–3197]
Black-body radiation and photonic systems: [3198–3250]
\[d = 1\] Ising ferromagnet: [3251–3255]
\[d \geq 2\] Ising and other ferromagnets: [2451, 3256–3298]
Infinite-range Ising ferromagnet: [3299]
Potts ferromagnet, Molecular field approximation: [2450, 3273, 3300–3303]
Percolation: [3304–3306]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [3307–3362]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [1977, 2440, 2494, 3363–3501]
Lévy-like and correlated anomalous diffusion: [17, 2079, 2080, 2133–2138, 2143, 2154, 2159, 2160, 2166, 3502–3563]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mossbauer effect: [2440, 3547–3550, 3564–3809]
Solar neutrinos; High energy physics: [3810–4281]
Ferrofluid-like materials, Lennard-Jones fluids: [3290, 4282–4303]
Solitons: [4304, 4305]
Glass, Spin-glass: [4713–4745]
Superfluid helium; Bose-Einstein condensation: [4746–4762]
Test of Boltzmann-Gibbs thermostatistics: [2897, 3220, 3221]
Cosmic rays; Elementary particles: [4251, 4763–4977]
Biological systems; Microemulsions; Liquid crystals: [4978–5076]
Stochastic resonance; Brownian motors: [5077–5102, 5104–5114]
Connection with the Theory of perceptions: [17]
Connection with the Theory of finances: [6, 3565, 5098, 5099, 5101–5104, 5115–5285]
Consistent testing; Statistical inference; Theory of probabilities: [520–532, 534–561, 1973, 5287–5336]
Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [1996, 3284, 5553–5863]
Neural and other networks: [5042, 5043, 5864–5968]
Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [3028–3032, 3035, 3044–3046, 3049–3052, 5969–6495]
Geophysics: [3051, 3052, 6039, 6496–6560]
Medicine: Tomography: [3053, 3058–3060, 5969, 6238, 6561–6612]
Symbolic dynamics, linguistics, philology, cognitive sciences, hydrology, ecology: [2549, 2551, 2582–2590, 5502, 6613–6753]

GENERAL READING

Generalized thermostatistics; Generalized distributions: [468, 6754–6907]
References

A family of non-extensive entropies

E.P. Borges and I. Roditi,

A R R Papa,

E M F Curado,

A Plastino and A R Plastino,

A Lavagno and P N Swamy,

E M F Curado, Condicoes para a existencia de estatisticas generalizadas, communicated at the XX Encontro Nacional de Fisica da Materia Condensada (10-14 June 1997, Caxambu, Brazil).

G B Bagci, A Arda and R Sever, Quantum mechanical treatment of the problem of constraints in nonextensive formalism revisited, preprint (2007) [cond-mat/0701745].

A S Parvan, Nonextensive statistics based on Landsberg-Vedral entropy, preprint (2017), 1711.09354 [cond-mat.stat-mech].

W.S. Nascimento, *Sobre uma adjuncao entre a Teoria Matematica da Comunicacao e a Teoria Quantica*, communicated at Seminarios de Pesquisa (PPGF, Instituto de Fisica, Universidade Federal da Bahia, 2017).

T. Deesuwan, Towards thermodynamics of quantum systems away from equilibrium, Doctor Thesis (Department of Physics, Imperial College, London, 2016).

Q.A. Wang, L. Nivanen, M. Perezil and A. Le Mehaute, How to proceed with nonextensive systems at equilibrium?, preprint (2003) [cond-mat/0304178].

Q.A. Wang, A. Le Mehaute, L. Nivanen and M. Pezeril, Equilibrium or meta-equilibrium incomplete thermostatistics with different q indices, preprint (2003) [cond-mat/0305398].
Non-logarithmic Jensen-Shannon divergence

P.W. Lamberti and A.P. Majtey,

On scale and concentration invariance in entropies

M. Grendar Jr. and M. Grendar,

A.F.T. Martins, P.M.Q. Aguiar and M.A.T. Figueiredo,

L. Knockaert, On scale and concentration invariance in entropies, Information Sciences 152, 139 (2003).

M.P. Almeida,

M. Baeten and J. Naudts,

V. Majernik, Entropy – A universal concept in sciences, Natural Science 6, 552-564 (2014), doi: http://dx.doi.org/10.4236/ns.2014.67055

D. Bussandri, L. Garro Linck, M. Re and P. Lamberti, Generalizacion de la divergencia de Jensen Shannon a estadistica no extensiva para el analisis de secuencias [Nonextensive generalization of the Jensen Shannon divergence for sequence analysis], Anales AFA 24 (2), 113-118 (2014).

B.H. Lavenda and J. Dunning-Davies, Qualms concerning Tsallis’s use of the maximumentropy formalism, preprint (2003) [cond-mat/0312132].

Q.A. Wang, Maximizing entropy change for nonequilibrium systems, preprint (2003) [cond-mat/0312329].

A. Rodriguez, V. Schwammle and C. Tsallis, Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as $N \to \infty$ limiting distributions, JSTAT P09006 (2008).

[874] S. Umarov and C. Tsallis, *Limit distribution in the q-CLT for q \geq 1 can not have a compact support*, preprint (2010), 1012.1814 [cond-mat.stat-mech].

[901] H. Suyari and A.M. Scarfone, *\(\alpha \)-divergence derived as the generalized rate function in a power-law system*, Proceedings of 2014 International Symposium on Information Theory and Its Applications, ISITA 2014, Article number 6979817, Pages 130-134 (Melbourne, Australia; 26 to 29 October 2014; Category numberCFP1405-CDR; Code 109700).

...

S. Zozor and J.M. Brossier, deBruijn identities: from Shannon, Kullback-Leibler and Fisher to generalized \(\Phi \)-entropies, \(\Phi \)-divergences and \(\Phi \)-Fisher informations, preprint (2014).

G.L. Ferri, Termodinamica no extensiva y estadisticas generalizadas, Doctor Thesis (Universidad Nacional de La Pampa, Argentina, October 2006).

M. Marino, Power-law distributions and equilibrium thermodynamics, preprint (2006) [cond-mat/0605644].

M. Masi, On the extended Kolmogorov-Nagumo information-entropy theory, the \(q \rightarrow 1/q \) duality and its possible implications for a non-extensive two dimensional Ising model, Physica A 377, 67-78 (2007).

V.N. Borodikhin, Two-dimensional disordered Ising model within nonextensive statistics, Physics of Metals and Metallography, 118 (6), 524-527 (2017) [Russian: Fizika Metallov i Metallovedenie 118 (6), 554-557 (2017)].

S. Furuichi and M. Abdel-Aty, Tsallis entropies and their theorems, properties and applications, Chapter 1 of Aspects of Optical Sciences and Quantum Information, ed. M Abdel-Aty (Research Signpost, 2007), in press.

G.B. Bagci, The physical meaning of Renyi relative entropies, preprint (2007) [cond-mat/0703008].

M.A. Kumar and R. Sundaresan, "Relative α-entropy minimizers subject to linear statistical constraints," 2015 21st National Conference on Communications, NCC 2015, 13 April 2015, Article number 7084835; 2015 21st National Conference on Communications, NCC 2015; Indian Institute of Technology Bombay Mumbai; India; 27 February 2015 through 1 March 2015; Category number CFP1542J-ART; Code 111913

M.A. Kumar and R. Sundaresan, "Relative α-entropy minimizers subject to linear statistical constraints," Twenty First National Conference on Communications (NCC), IEEE (2015).

E. Akturk, G. B. Bagci and R. Sever, "Is Sharma-Mittal entropy really a step beyond Tsallis and Renyi entropies?", preprint (2007) [cond-mat/0703277].

[1192] A.M. Mathai, Some recent results connecting many areas, communicated at the International Conference on Mathematical Sciences (3-5 January 2011, Pala-Kerala, India).

D. Campos, Renyi and Tsallis entropies for incomplete or overcomplete systems of events, Physica A 389, 981-992 (2010).

D. Campos, Macroscopic characterization of data sets by using the average absolute deviation, Physica A 393, 222-234 (2014).

G.L. Gilardoni, On a Gel’fand-Yaglom-Peres theorem for f-divergences, preprint (2009), 0911.1934 [cs.IT].

H. Hasegawa, Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems, preprint (2009), 0912.0521 [cond-mat.stat-mech].

X. Feng, Using harmonic mean to replace Tsallis q-average, preprint (2010), 1002.4254 [cond-mat.stat-mech].

X. Feng, The Tsallis entropy and the Boltzmann entropy applicable to the same classic generalized system, World Chinese Forum on Science of General Systems (WCFSGS) 6 (S1), Total No. 49 (2010) [ISSN 1936-7260].

T. Oikonomou and B. Bagci, Reply to ”Comment on 'Route from discreteness to the continuum for the Tsallis q-entropy'”, Phys. Rev. E 97, 066102 (2018).

G. Samid, Shannon revisited - Considering a more tractable expression to measure and manage intractability, uncertainty, risk, ignorance, and entropy, preprint (2010), 1006.1055 [cs.IT].

A.E. Rastegin, Properties and upper continuity bounds of relative q-entropy for $1 < q \leq 2$, preprint (2010), 1010.1335 [math-ph].

H.J. Jensen and P. Tempesta, Group entropies: from phase space geometry to entropy functionals via group theory, preprint (2018), arxiv 201809.0247

M. Niezgoda, *Shannon like inequalities for f-connections of positive linear maps and positive operators*, Linear Algebra and its Applications 481, 186-201 (2015).

[1674] N.P. Shah, Entropy maximisation and queues with or without balking, Doctor Thesis (School of Electrical Engineering and Computer Science Faculty of Engineering and Informatics, University of Bradford, 2014).

[1704] I.V. Toranzo, S. Zozor and J.M. Brossier, Generalization of the de Bruijn’s identity to general Φ-entropies and Φ-Fisher informations, preprint (2016), 1611.09400 [cs.IT].

[1705] F. Pavese, On the definition of the measurement unit for extreme quantity values: Some considerations on the case of temperature and the Kelvin scale, arxiv 1612.07161.

1. References

[2240] V. Svoboda, *Generalized stochastic processes with applications to financial markets*, Master Thesis (Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physics, 2016).

[2339] J. Ruseckas, Modeling Tsallis distributions by nonlinear stochastic differential equations with application to financial markets, communication at the APFA7 and Tokyo Tech-Hitotsubashi Interdisciplinary Conference (Tokyo, 1 to 5 March 2009).

W. Li, Q.A. Wang and A. Le Mehaute, Maximum path information and Fokker-Planck Equation, preprint (2010), 1011.3678 [cond-mat.stat-mech].

P. Garbaczewski, V. Stephanovich, D. Kedzierski, Heavy-tailed targets and (ab)normal asymptotics in diffusive motion, Physica A 390, 990-1008 (2011).

[2490] H. Zhao and C.S. Yu, Remedying the strong monotonicity of the coherence measure in terms of the Tsallis relative α entropy, preprint (2017), 1704.04876 [quant-ph].

A. Pluchino, V. Latora and A. Rapisarda, Dynamical anomalies and the role of initial conditions in the HMF model, preprint (2004) [cond-mat/0401582].

Unorthodox properties of critical clusters

A. Robledo, K.J. Ellis, Tsallis statistics, anomalous diffusion and neutron time of flight

A. Diaz-Ruelas and A. Robledo, G. Ruiz and C. Tsallis,

Critical fluctuations, intermittent dynamics and Tsallis statistics

A. Robledo,

Routes to chaos, universality and glass formation

A. Diaz-Ruelas and A. Robledo, Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos, EPL 105, 40004 (2014) (6 pages), doi: 10.1209/0295-5075/105/40004

K.J. Ellis, Neutron and muon studies of spin dynamics in magnetic systems, Doctor Thesis (University of Huddersfield, June 2013).

A. Robledo, Unorthodox properties of critical clusters, Molecular Physics 103, 3025-3030 (2005).

Amplitude modulation of ion-acoustic waves in magnetized electron-positron-ion plasma with q-nonextensive electrons and positrons, Journal Tubitak (Turkey, 2015).

F. Sattin, On the computation of the entropy for dissipative maps at the edge of chaos using non-extensive statistical mechanics, preprint (2002) [cond-mat/0212173].

Q.A. Wang, Measuring the information growth in fractal phase space, preprint (2003) [cond-mat/0305540].

G. Bel and E. Barkai, Ergodicity breaking in a deterministic dynamical system, preprint (2005) [nlin.CD/0507036].

A. Prestes de Menezes Filho, Nao-extensividade termodinamica, invariancia discreta de escala e elasto-plasticidade: Estudo numerico de um modelo geomecanico auto-organizado criticamente, Doctor Thesis (Civil Engineering, Pontificia Universidade Catolica do Rio de Janeiro, 2003) [In Portuguese].

T. Rohlf and C. Tsallis, Dynamics and nonextensivity of elementary 1D cellular automata with long range memory, communicated at the School and Conference on Complex Systems and Nonextensive Statistical Mechanics (Trieste, 2006).

S. Adamenko, V. Bolotov, V. Novikov and V. Yatsyshin, Control of multiscale systems with constraints 4, Control of the evolution of nuclear systems on the basis of the principle of dynamical harmonization, Interdisciplinary Studies of Complex Systems 3, 35-95 (2013).

T.D. Frank, Chaos from nonlinear Markov processes: Why the whole is different from the sum of its parts, Physica A 388, 4241-4247 (2009).

A. Bravetti, "Geometrothermodynamics, from ordinary systems to black holes," Doctor Thesis (Sapienza University of Rome, Rome, January 2014).

C.A. Bertulani, Shubhchintak and A.M. Mukhamedzhanov, "Cosmological Lithium problems," EPJ Web of Conferences 184, 01002 (2018), doi: https://doi.org/10.1051/epjconf/201818401002

A. Olemskoi and I. Shuda, "Multifractal theory within quantum calculus," preprint (009), 0907.4127 [cond-mat.stat-mech].

A. Olemskoi and I. Shuda, "Multifractal theory within quantum calculus," preprint (009), 0907.4127 [cond-mat.stat-mech].

[3048] M.H.A. Hassan *Quantifying heteroskedasticity metrics*, Doctor Thesis (Faculty of Science and Technology, Institute for Intelligent Systems Research and Innovation, Deakin University, Australia, 2016).

[3165] A. Gulec, Ozet fraktallarin yogun madde fiziginde uygulamali, Doctor Thesis (Ege University, Izmir, Turkey, February 1997).

[3301] P.R. del Santoro, Aproximacao de campo molecular do modelo de Potts generalizado, Master Thesis (Universidade de Sao Paulo-Brazil, 1994).

[3414] Z. Chen and X. Xu, *Multifractality can be a universal signature of phase transitions*, preprint (2013), 1304.3189 [cond-mat.stat-mech].

W. Hurlimann, *Benford’s law in scientific research*, Internat. J. Scientific and Engineering Res. 6 (7), 143-148 (2015), ISSN 2229-5518

[3907] ALICE Collaboration, Production of the $\rho(770)^0$ meson in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, preprint (2018), 1805.04365 [nucl-ex].

[3914] E. Appelt, Measurements of charged-particle transverse momentum spectra in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV and in pPb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS detector, Doctor Thesis (Vanderbilt University, Nashville, Tennessee, 2014).

[4007] ALICE Collaboration Production of Σ(1385)± and Σ(1385)0 in p—Pb collisions at √sNN = 5.02 TeV, preprint (2017), 1701.07797 [nucl-ex].

[4016] T.S. Biro and Z. Neda, Dynamical stationarity as a result of sustained random growth, preprint (2016), 1611.06698 [cond-mat.stat-mech].

[4025] M.S. Kayl, Measurement of the charged particle density with the ATLAS detector: First data at √s = 0.9, 2.36 and 7 TeV, Doctor Thesis (University of Amsterdam, 2016).

[4027] CMS Collaboration, Strange particle production in pp collisions at √s = 0.9 and 7 TeV, J. High Energy Phys. 05, 064 (2011) (40 pages).

B. De, Non-extensive statistics and a systematic study of meson-spectra at LHC energy $\sqrt{s(NN)} = 2.76\,\text{TeV}$, preprint (2014), 1408.5811 [nucl-th].

B. De, Systematic study of K^0 and ϕ-meson spectra with Tsallis non-extensive statistics, IJSRST 4 (2), 1485-1490 (2018).

D. Rohrscheid and G. Wolschin, Charged-hadron production in the three-sources RDM at LHC energies, EPJ Web of Conferences 70, 00074 (2014) (13 pages), http://dx.doi.org/10.1051/epjconf/20147000074

G. Wolschin, Beyond the thermal model in relativistic heavy-ion collisions, Physical Review C 94 (2), 024911 (2016).

A. Haubold, H.J. Haubold and D. Kumar, Solar neutrino records: Gauss or non-Gauss is the question, preprint (2012), 1202.1549 [physics.gen-ph].

A. Lavagno and D. Pigato, Power-law quantum distributions and nonextensive statistical effects in protoneutron stars, communicated at IC-MSQUARE 2012 (Budapest, 3-7 September 2012).

Collisionless damping of dust-acoustic waves in a charge varying dusty plasma

R. Amour and M. Tribeche,

Updated calculations

κ

The effect of new collision strengths with equilibrium and optically thin line spectra. I. Theory and synthetic Fe IX-XIII spectra, Astronomy and Astrophysics

κ

κ

κ

κ

κ

κ

κ

κ

κ

Ion-acoustic soliton energy in a plasma with nonextensive electrons, Physica A

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

M. Biyajima, T. Mizoguchi and N. Suzuki (ALICE Collaboration), *What is the implication of the observation by CDF Collaboration of the transverse momentum spectrum at $\sqrt{s} = 1.96$ TeV?*, preprint (2016), 1604.01264 [hep-ph].

A. Badala, *Overview of ALICE results on hadronic resonance production*, EPJ Web of Conferences 142, 01004 (2017) (6 pages), doi: 10.1051/epjconf/201714201004

[4908] G. Wilk, Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC, communicated at the IX Workshop on Correlation and Femtoscopy (5-8 November 2013, Acireale, Italy).

[4922] CMS Collaboration, Measurement of Λ_b cross section and the Λ_b to Λ_b ratio with $J/\psi \Lambda$ decays $\sqrt{s} = 7$TeV, Phys. Lett. B 714, 136-157 (2012).

J. Cleymans, The Tsallis distribution at the LHC, communicated at CERN Heavy Ion Forum (1 February 2013, Geneva).

LHCb Collaboration, Study of the production of \(\Lambda^0_b \) and \(\bar{B}^0 \) hadrons in pp collisions and first measurement of the \(\Lambda^0_b \rightarrow J/\psi pK^- \) branching fraction, Chinese Physics C 40 (1), 011001 (2016) (16 pages).

LHCb collaboration, Forward production of \(Y \) mesons in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV, JHEP 11, 103 (2015) (34 pages).

V. Riabov, Fitting PHENIX identified hadron production spectra to Tsallis function in \(p + p \) and \(d + Au \) collisions at 200 GeV, communicated at CERN (1 February 2013, Geneva).

F. Sikler, Tsallis fitting of the CMS data, communicated at CERN (1 February 2013, Geneva).

[5100] D. Prenga, M. Ifti and S. Kovaci, Extended views on the study of out-of-equilibrium opinion and opinion-like systems, The International Physics Conference Tirana 2015, 43-48 (University of Tirana, Faculty of Natural Sciences, Department of Physics, 2015).

[5299] D.R. Bickel, Time-series intermittency quantified by generalized entropy: An alternative to multifractal analysis, communicated at the ”International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics” (Denton, Texas, 3-6 April 2000).
[5307] Y. Kanzawa, On possibilistic clustering methods based on Shannon/Tsallis-entropy for spherical data and categorical multivariate data, Chapter Modeling

[5338] A.C. Sparavigna, *Graphs of q-exponentials and q-trigonometric functions*, HAL hal-01377262 (2016), doi: https://hal.archives-ouvertes.fr/hal-01377262

N. Kalogeropoulos, *Convexity and the “Pythagorean” metric of space(-time)*, preprint (2016), 1606.05528 [physics.gen-ph].

N. Kalogeropoulos, *Convexity and the “Pythagorean” metric of space(-time)*, preprint (2016), 1606.05528 [physics.gen-ph].

A.S. Martinez, Modelos da econo- e psico-fisica com funcoes exponencial e logaritmo generalizadas, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

[5604] M. Moret, P.G. Pascutti, P.M. Bisch and K.C. Mundim, Determinacao de estrutura de peptideos por otimizacao estocastica (GSA), communicated at XX Encontro Nacional de Fisica da Materia Condensada (10-14 June 1997, Caxambu, Brazil).

Text mining by Tsallis entropy

J. Chen, H. Li, Y. Wang, R. Xie and X. Liu,

Ping Li, A very efficient scheme for estimating entropy of data streams using compressed counting, preprint (2008), 0808.1771 [cs.DS].

H. Shimodaira, Automatic color image segmentation using a square elemental region-based seeded region growing and merging method, preprint (2017), arxiv 1711.09352

Waals interaction

[5869] F. Montani, Neural population activity: finding simplicity in complexity, communicated at Medyfinol 2014 (Maceio, Brazil, 13 to 16 October 2004).

S. Sun, L. Zhang and C. Guo, Medical image registration by minimizing divergence measure based on Tsallis entropy, Int. J. Biological Medical Sciences 2, 75-80 (2007).

W. Mohamed and A. Ben Hamza, Medical image registration using stochastic optimization, Optics and Lasers in Engineering 48, 1213-1223 (2010).

[6014] H. Rabel, L. Zunino, O. Rosso and N. Cap, Q-statistics and disequilibrium in dynamic speckle measures, communicated at Medynol 2014 (Maceio, Brazil, 13 to 16 October 2004).

A.C. Sparavigna and R. Marazzato, Effects of GIMP Retinex filtering evaluated by the image entropy, preprint (2015), 1512.05653

A.C. Sparavigna and R. Marazzato, Evaluation of GIMP retinex filtering of images by means of the Shen++ Max Shannon entropy finder, hal-01308434 (2016), https://hal.archives-ouvertes.fr/hal-01308434

A.C. Sparavigna, Mutual information and nonadditive entropies: The case of Tsallis entropy, Internat. J. Sciences 4 (10), 1-4 (2015), ISSN 2305-3925

A.C. Sparavigna, Entropies and fractal dimensions, Philica.com, 559 (2016).

J. Mohanalin, Beenamol, P.K. Kalra and N. Kumar, A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index, Computers and Mathematics with Applications 60 (8), 2426-2432 (2010).

[6120] F. Nie, A three-level thresholding technique based on nonextensive entropy and fuzzy partition with artificial bee colony algorithm, Internat. J. Hybrid Information Technology 8 (7), 1-10 (2015), doi: http://dx.doi.org/10.14257/ijhit.2015.8.7.01

Y. Hou, B. Wang, D. Song, X. Cao and W. Li, Quadratic Tsallis entropy bias and generalized maximum entropy models, Computational Intelligence 30 (2), 233-262 (2014).

J. Pan, Z. Ma, Y. Pang and Y. Yuan, Robust probabilistic tensor analysis for time-variant collaborative filtering, Neurocomputing 119, 139-143 (2013), http://dx.doi.org/10.1016/j.neucom.2012.03.035

M. Shen, Q. Zhang and P.J. Beadle, Nonextensive entropy analysis of non-stationary ERP signals, IEEE International Conference on Neural Networks and Signal Processing (Nanjing, China, 14-17 December 2003), pages 806-809.

L. Montangie, Modelos minimales y teoria de la informacion de poblaciones neuronales, Doctor Thesis (Universidad de La Plata, Argentina, 2017).

A. Ben Hamza, Nonextensive information-theoretic measure for image edge detection, J. Electronic Imaging 15, 013011 (2006).

[6184] R.S. Sneddon, SNEDDON AND ASSOC INC (SNED-Non-standard), Data value measuring method for electro encephalography data, involves computing attribute for each data subset so that attribute is dependent on data in each subset and attribute is equal to variability of data in each data subset, Patent US2005159919-A1 (2005-424391).

J.-F. Bercher, Entropies et criteres entropiques, preprint (2014), https://hal.archives-ouvertes.fr/hal-01087503

J.-F. Bercher, Entropies and entropic criteria, preprint (2014), J.-F. Giovanelli and J. Idier, Inversion methods applied to signal and image processing, Wiley, pp.26, 2015. hal- 01087579, HAL Id: hal-01087579 https://hal.archives-ouvertes.fr/hal-01087579

A.L. Tukmakov, Application of the function of the number of states of a dynamic system to investigation of electroencephalographic reaction to photostimulation, Zhurnal Vysshei Nervnoi Deyatelnosti imeni i P Pavlova 53, 523 (2003).

F. Vallianatos, *Could complexity theory and statistical physics be used to support earthquake precursors recognition?,* 35th General Assembly of the European Seismological Commission, ESC2016-634 (2016).

G.P. Pavlos, Understanding the multi-scale and multi-fractal dynamics of space plasmas through Tsallis non-extensive statistical theory, preprint (2012), 1203.4003 [nlin.CD].

H.V. Ribeiro, Identificacao e modelagem de padroes em sistemas complexos, Doctoral Thesis (Universidade Estadual de Maringa, Brazil, 2012).

S.-R.G. Christopoulos, N.V. Sarlis, P.A. Varotsos, N.V. Sarlis and E.S. Skordas, Aging and scaling of aftershocks
S. Abe, N. V. Sarlis, E. S. Skordas, H. Tanaka and P. A. Varotsos, Scale-free network of earthquakes
N. Scafetta, P. Grigolini, P. Hamilton and B.J. West, Omori’s law in the Internet traffic
S. Abe and N. Suzuki, A law behind congestion of the Internet
N. Scafetta, P. Grigolini, P. Hamilton and B.J. West, Non-extensive diffusion entropy analysis: Non-stationarity in teen-birth phenomena
S. Abe and N. Suzuki, Scale-free network of earthquakes

D. Campos and M.R. Campos, Underlying thermodynamic relations of a species diversity index: Freshwater crabs from Colombia, Ecological Indicators 15, 198-207 (2012).

J. Gillet and M. Ausloos, A comparison of natural (english) and artificial (esperanto) languages. A Multifractal method based analysis, preprint (2008), 0801.2510 [cs.CL].

[6776] I. Ivanov, Revolutions in Thermodynamics, Articles and Remarks [In Russian] [http://www.scientific.ru/journal/tsallis/tsallis.html]

[6878] I. Bonamassa, Meccanica statistica nonestensiva e sistemi dinamici, Tesi di Laurea in Fisica (Università del Salento, Lecce, 2010).

264

B.M. Boghosian, *Thermodynamics and statistical mechanics - From Boltzmann and Gibbs to Tsallis*, oral communication, College of Science and Engineering, American University of Armenia (20 November 2012, Yerevan).

