GENERAL THEORY
Generalized entropy and thermostatistics: [1]
Connection to thermodynamics, ensembles and Jaynes’ information theory: [2–1254]
H-theorem and irreversibility: [1255–1260,1312–1327]
Ehrenfest theorem, von Neumann equation: [3,1328–1331,1504]
Quantum statistics: [1333–1367,2871,1368–1377,1379–1402,920,921,936,922–935]
Variational and perturbative methods; Bogolyubov inequality; Green functions; Path integral; Boltzmann equation: [1346,1403,1404,4675,1406–1466,1624,3224–3236]
Langevin and Fokker-Planck equations: [1259,1261–1311,1337,1467–1531,1536–1722]
Fluctuation-dissipation, Nyquist and Onsager reciprocity theorems, Kubo’s linear response theory and Kramers-Kronig relation: [6,1723–1730,1732–1737]
Poisson equation: [1738–1740,1745,1746,3683–3685]
Callen identity: [1747]
Ising transmissivity: [1748]
Classical equipartition principle: [1749–1751]
Connection with quantum uncertainty: [1752–1779]
Connection with Fisher information measure: [1780–1789]
Connection with ergodicity, nonlinear dynamical systems, self-organized criticality, cellular automata, fractals: [9,35,38,39,1399,1790–1849,1851–1855,1873–1890,1892–2128]
Connection with general relativity, cosmology, dark energy, string theory: [1781,2129–2194]
Connection with quantum groups and quantum mechanics: [2195–2236]
Connection with wavelets; Signal processing; EEG: [2237–2252,2630,2574,2673–2706]
Connection with quantum correlated many-body problems: [2800–2807]
Connection with the Gentile and the exclusion Haldane statistics: [2808–2811]
Connection with finite systems: [1723,2808]
Rigorous results (generalized entropy and thermostatistics): [1793–1795,1798,2812–2817]
Integral transformations (Hilhorst and Prato formulae): [1335,1723,2818,2819,2823]
ONE-BODY SYSTEMS
Two-level system: [1,2847]
Harmonic oscillator: [2816,2847–2849,722]
Free particle: [2850]
Larmor precession: [1330]
Rigid rotator: [2819–2822]
Hydrogen and hydrogen-like atoms: [2851–2866,867]

*This regularly updated Bibliography (at http://tsallis.cat.cbpf.br/biblio.htm) contains 4989 articles from 6823 (co)authors. It does not address the vast existing literature addressing nonextensive thermodynamical anomalies, but only articles including at least one substantial relation with non-additive entropies, nonextensive statistical mechanics and thermodynamics. It is a fairly complete listing whose indexation is, however, only indicative.
MANY-BODY SYSTEMS

Ideal, classical gases, and other toy models: [1723,1749,2818,2824–2846]
Independent spin paramagnet, Landau magnetism: [2200,2203–2206,2867–2870,2872–2874]
Black-body radiation and photonic systems: [2875–2916]
$d = 1$ Ising ferromagnet: [2917–2921]
$d ≥ 2$ Ising and other ferromagnets: [1748,2922–2954,3659–3666]
Infinite-range Ising ferromagnet: [2955]
Potts ferromagnet, Molecular field approximation: [1747,2939,2956–2959]
Percolation: [2960–2962]
Electron-phonon systems; tight-binding-like Hamiltonians; nanosystems; theoretical chemistry: [2963–2971,2973–2986,3605,2987–3017]

APPLICATIONS

Self-gravitating systems, Stellar polytropes, Vlasov equation, Galaxies, Galaxy clusters: [1450,1738,1781,3018–3034,4773,3035–3110,3112–3133]
Lévy-like and correlated anomalous diffusion: [3134–3183,15,1468,1469,1504–1507,1509,1510,1514,1519,1524,1525,1531–1535]
Turbulence; Granular matter; Viscous fingering; Navier-Stokes equation; Boltzmann equation; Mösbbauer effect: [1738,3173–3176,3184–3223,3237–3361,3848,3363–3391]
Solar neutrinos; High energy physics; Cosmic rays: [3392–3572,4018–4040,3573–3656]
Ferrofluid-like materials, Lennard-Jones fluids: [3657–3659,3667–3682,1741–1744]
Solitons: [3686,3687]

Plasma (electron velocity distribution, magnetohydrodynamics): [3688–3861,3863–3931]
Glass, Spin-glass: [3932–3955]

Superfluid helium; Bose-Einstein condensation: [3956–3968]
Test of Boltzmann-Gibbs thermostatistics: [2133,2888,2889]

Cosmic rays; Elementary particles: [3969–4017,4033,4041–4110,4112–4151]

Biological systems; Microemulsions; Liquid crystals: [4152–4174,4202–4231,4775–4799]

Stochastic resonance; Brownian motors: [4232–4262]

Connection with the Theory of perceptions: [15]

Connection with the Theory of finances: [6,3185,4253,4255,4256,4263–4378,4381,4380–4386]

Consistent testing; Statistical inference; Theory of probabilities: [4387–4407,1446,393–420]

Theory of functions; Geometric approaches: [4408–4556,4546,4557,4558,939–986,4684,988]

Simulated annealing and optimization techniques; Monte Carlo (Genetics, Traveling salesman problem, Data fitting curves, Quantum chemistry, Gravity models, Lennard-Jones clusters, Thomson model, spin systems, proteins, nucleic acids): [2949,4175–4201,4559–4736,4738–4765]

Neural and other networks: [4766–4772,4774–4776,4800–4875]

Analysis of time series (nonlinear dynamics, epilepsy, earthquakes, economics) and images: [2237,2239–2242,2248,2250–2381,2412–2616,2619,2620,2617,2618,2621–2628]

Geophysics: [2292,2574,2629–2672]

Medicine; Tomography: [2253,2673,2678,2680,2446,2707–2716,2382–2411]

GENERAL READING

Generalized thermostatistics, Lévy distributions: [4876–4893,345,4894–4989]
REFERENCES

M. Hotta, *Bi-composability and generalized entropy composition with different q indices*, preprint (1999) [cond-mat/9908236].

M. Jauregui and C. Tsallis, *Law of large numbers and q-Gaussian limiting distributions with compact support (q < 1)*, preprint (2014), 1406.7327 [cond-mat.stat-mech].

M.A. Man’ko and V.I. Man’ko, Quantum correlations expressed as information and entropic inequalities for composite and noncomposite systems, preprint (2014), 1403.1490 [quant-ph].

J. Batle, M. Casas, A.R. Plastino and A. Plastino, Entanglement, mixedness, and

357 (2002).

[212] Q.A. Wang, L. Nivanen, A. Le Mehaute and M. Pezeril, Note on Abe’s general pseudoadditivity for nonextensive systems, preprint (2001) [cond-mat/0111541].

[229] M. Annunziato, P. Grigolini and B.J. West, Canonical and non-canonical equilibrium
distribution, preprint (2000) [cond-mat/0010363].

L. Velazquez and F. Guzman, *Relaxing the extensive postulates*, preprint (2001) [cond-mat/0107214].

L. Velazquez and F. Guzman, *Justifying the Tsallis formalism*, preprint (2001) [cond-mat/0107441].

[284] F. Baldovin and E. Orlandini, *Incomplete equilibrium in long-range interacting sys-

[300] G. Miritello, A. Pluchino and A. Rapisarda, Anomalous and nonergodic dynamics in long-range interacting systems, communicated at the 7th International Conference

[331] Q.A. Wang, Many-body q-exponential distribution prescribed by factorization hypothesis, preprint (2001) [cond-mat/0112211].

[334] H. Touchette, When is a quantity additive, and when is it extensive?, Physica A 305, 84 (2002).

[358] C. Beck, Superstatistics: Recent developments and applications, in Complexity,

[420] S. Bwanakare, A stochastic non-homogeneous constant elasticity of substitution production function as an inverse problem: A non-extensive entropy estimation approach,

[438] F. Baldovin, E. Brigatti and C. Tsallis, Quasi-stationary states in low dimensional

communication at XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics (4-8 December 2006, Mar del Plata, Argentina).

[583] F. Topsoe, Interaction between truth and belief as the key to entropy and other quantities of statistical physics, preprint (2008), 0807.4337[math-phys].
[618] S. Furuichi, On bounds of Tsallis relative entropy and an inequality for generalized
skew information, preprint (2010), 1008.3441 [math.FA].

[639] T. Yamano, Generalized symmetric mutual information applied for channel capacity, preprint (2001) [cond-mat/0102322].

[640] R. Botet, M. Ploszajczak, K.K. Gudima, A.S. Parvan and V.D. Toneev, The thermo-

A. Rodriguez, V. Schwammle and C. Tsallis, Strictly and asymptotically scale-invariant probabilistic models of correlated random variables having q-Gaussians as $N \to \infty$ limiting distributions, JSTAT P09006 (2008).

S. Umarov and C. Tsallis, Limit distribution in the q-CLT for $q \geq 1$ can not have a compact support, preprint (2010), 1012.1814 [cond-mat.stat-mech].

H. Suyari and T. Wada, *Multiplicative duality, q-triplet and (μ, ν, q)-relation derived from the one-to-one correspondence between the (μ, ν)-multinomial coefficient and Tsallis entropy S_q*, Physica A 387, 71-83 (2007).

M. Jauregui and C. Tsallis, *Comentarios sobre a q-transformada de Fourier*, communicated at the 2nd Workshop of the National Institute of Science and Technology
for Complex Systems (Rio de Janeiro, 1-5 March 2010).

[713] C. Vignat and A. Plastino, Central limit theorem and deformed exponentials, J. Phys. 39

T. Oikonomou, *From Boltzmann-Gibbs ensemble to generalized ensembles*, preprint
(2007), 0712.2310 [cond-mat.stat-mech].

[946] H.J. Haubold, D. Kumar, S.S. Nair and D.P. Joseph, Special functions and pathways

[948] A.M. Mathai, Some recent results connecting many areas, communicated at the International Conference on Mathematical Sciences (3-5 January 2011, Pala-Kerala, India).

[1042] J. Pitrik and D. Virosztek, On the joint convexity of the Bregman divergence of ma-

[1087] H. Hasegawa, Validity of the factorization approximation and correlation induced by nonextensivity in N-unit independent systems, preprint (2009), 0912.0521 [cond-mat.stat-mech].
[1091] X. Feng, Using harmonic mean to replace Tsallis q-average, preprint (2010), 1002.4254 [cond-mat.stat-mech].
[1092] X. Feng, The Tsallis entropy and the Boltzmann entropy applicable to the same classic generalised system, World Chinese Forum on Science of General Systems (WCFSGS) 6 (S1), Total No. 49 (2010) [ISSN 1936-7260].
[1103] G.B. Bagci, T. Oikonomou and U. Tirnakli, Comment on Essential discreteness in
generalized thermostatistics with non-logarithmic entropy by S. Abe, preprint (2010), 1006.1284 [cond-mat.stat-mech].

Shannon, Renyi and Tsallis entropy analysis of DNA using phase plane.

[1128] T. Yamano, When index of escort mean is different from nonextensive entropy index, preprint (2010).
[1132] N. Ebrahimi, N.Y. Jalali and E.S. Soofi, Comparison, utility, and partition of dependence under absolutely continuous and singular distributions, Multivariate Analysis (2014), in press, doi: http://dx.doi.org/10.1016/j.jmva.2014.06.014

M. Ponmurugan, *Tsallis statistics generalization of non-equilibrium work relations*, preprint (2011), 1110.5153 [cond-mat.stat-mech].

V.M. Ilic and M.S. Stankovic, *On the characterization and connection between q-additive information measures and multiplicative certainty measures*, communicated at the First National Conference on Information Theory and Complex Systems (Bel-

[1283] Zhi-Qiang Jiang, Wei Chen, Wei-Xing Zhou, Scaling in the distribution of intertrade
[1298] B.C.C. dos Santos and C. Tsallis, Unificacao das equacoes estocasticas de Ito e Stratonovich e evolucao temporal para estados estacionarios q-Gaussianos, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

[1460] F.A. da Costa and M.D.S. de Meneses, *Comment on “Conservative forces in nonex-
tensive kinetic theory”, preprint (2003) [cond-mat/0306220].

Y. Shikano, T. Wada and J. Horikawa, Discrete-time quantum walk with feedforward quantum coin, Nature/Scientific Reports 4, 4427 (2014) (7 pages), dpi: 10.1038/srep04427

K.E. Bassler, G.H. Gunaratne and J.L. Mc Cauley, Markov processes, Hurst exponents, and nonlinear diffusion equations with application to finance, Physica A 369,

[1611] A.A.G. Cortines and R. Riera Freire, *Non-extensive behavior of a stock market index*

[1630] M. Shiino, Stability analysis of mean-field-type nonlinear Fokker-Planck equations

[1636] R.S. Gonzalez, Difusao anomala: Transicao entre os regimes localizado e estendido na caminhada do turista unidimensional, Master Thesis (University of Sao Paulo, Ribeirao Preto, August 2006).

[1642] J. Du, Possible dynamics of the Tsallis distribution from a Fokker-Planck equation (I), preprint (2009), 0905.4310 [cond-mat.stat-mech].

A. Rossani and A.M. Scarfone, Generalized Pearson distributions for charged particles interacting with an electric and/or a magnetic field, Physica A 388, 2354-2366 (2009).

J. Ruseckas, Modeling Tsallis distributions by nonlinear stochastic differential equations with application to financial markets, communication at the APFA7 and Tokyo Tech-Hitotsubashi Interdisciplinary Conference (Tokyo, 1 to 5 March 2009).

F. Michael, Notes on the Klein-Gordon equation, preprint (2010), 1004.1543 [cond-mat.stat-mech].

W. Li, Q.A. Wang and A. Le Mehaute, Maximum path information and Fokker-Planck Equation, preprint (2010), 1011.3678 [cond-mat.stat-mech].

Z. Gonzalez Arenas, D.G. Barci and C. Tsallis, Nonlinear inhomogeneous Fokker-

[1705] J.L. Du, Power-law distributions and fluctuation-dissipation relation in the stochas-
tic dynamics of two-variable Langevin equations, preprint (2012), 1202.0707 [cond-mat.stat-mech].

[1736] A.A. Budini, Extended q-Gaussian and q-exponential distributions from Gamma random variables, preprint (2015), 1501.01037 [cond-mat.stat-mech].

[1822] A.R.R. Papa, Estudo mecanico-estatistico de sistemas biologicos complexos, PhD The-
sis (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro-Brazil, 1997).

[1841] D. Koutsoyiannis, *Entropy as an explanatory concept and modelling tool in hydrology*, lecture delivered at the Dipartimento di Idraulica, Trasporti e Strade, Universita di
Roma “La Sapienza” (Roma, 1 October 2008).

A.M.C. de Souza, *Estudos sobre o ensemble de Wishart-Tsallis de matrizes aleatorias*, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

101

[1935] R. Tonelli, *Convergence to the critical attractor at infinite and tangent bifurcation*

[2004] F. Vallianatos, A. Nardi, R. Carluccio and M. Chiappini, Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks

[2041] C. Tsallis, On mixing and metaequilibrium in nonextensive systems, Physica A 302,

[2059] A. Robledo, Critical attractors and q-statistics, Lecture Course at the CBPF School
on Nonextensive Statistical Mechanics (Rio de Janeiro, 2-6 April 2007).

\(112\)
[2120] T.D. Frank, Chaos from nonlinear Markov processes: Why the whole is different from the sum of its parts, Physica A 388, 4241-4247 (2009).
[2135] L.P. Chimento, F. Pennini and A. Plastino, Cosmological applications of the Frieden-

[2191] T. Ruggeri and C. Rogers, *Q-Gaussian integrable Hamiltonian reductions in anisen-

[2263] O. Sotolongo-Grau, D. Rodriguez-Perez, O. Sotolongo-Costa and J. C. Antoranz,
Does tissue annihilation dose change along radiotherapy protocols?, preprint (2011), 1104.5088 [q-bio.TO].

[2312] F. Nie, Tsallis cross-entropy based framework for image segmentation with histogram

[2327] C. Gonzalez, P. Castello, M. Chover, M. Sbert, M. Feixas and J. Gumbau, Simpli-

[2358] M. Shen, Q. Zhang and P.J. Beadle, Nonextensive entropy analysis of non-stationary ERP signals, IEEE International Conference on Neural Networks and Signal Process-

[2380] R.S. Sneddon, SNEDDON AND ASSOC INC (SNED-Non-standard), Data value measuring method for electro encephalography data, involves computing attribute for each data subset so that attribute is dependent on data in each subset and attribute is equal to variability of data in each data subset, Patent US2005159919-A1 (2005-540950).

[2383] D. La Vecchia, L. Camponovo and D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization, Computational Statistics and Data Analysis 82, 137-151 (2015).

[2390] A.C.S. Senra Filho, G.C. Barizon and L.O. Murta Junior, Myocardium segmentation improvement with anisotropic anomalous diffusion filter applied to cardiac magnetic

[2419] E.C. Ramberg, Methods and apparatus for designing high-dimensional combinatorial experiments, Patent record available from the World Intellectual Property Organiza-

[2424] X. Li and Q. Xu, *Monte Carlo illumination self-adaptive method for image processing field, involves sampling voltage of pixel when value is larger than threshold value, and utilizing sampling points to increase another threshold value according to rule*, Patent Number(s): CN102289842-A, Patent Assignee Name(s) and Code(s): UNIV TIANJIN(UTIJ-C).

[2449] Y. Li, X. Fan and G. Li, *Image segmentation based on Tsallis-entropy and Renyi-entropy and their comparison*, 2006 IEEE International Conference on Industrial In-
formatics, INDIN’06 Article 4053516, 943-948 (2007).

[2485] A.L. Tukmakov, Application of the function of the number of states of a dynamic sys-
tem to investigation of electroencephalographic reaction to photostimulation, Zhurnal Vysshei Nervnoi Deyatelnosti imeni i P Pavlova 53, 523 (2003).

[2523] L. Bai, L. Rossi, H. Bunke and E.R. Hancock, Attributed graph kernels using the Jensen-Tsallis q-differences, Lecture Notes in Computer Science 8724 LNAI, Issue PART 1, 99-114 (2014) [European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014; Nancy; France; 15 September 2014 through 19 September 2014; Code 107499].

[2571] K. Eftaxias, L. Athanasopoulou, G. Balasis, M. Kalimeri, S. Nikolopoulos, Y. Contoyiannis, J. Kopanas, G. Antonopoulos and C. Nomicos, Unfolding the procedure of characterizing recorded ultra low frequency, kHz and MHz electromagnetic anomalies

[2587] L. Telesca, A non-extensive approach in investigating the seismicity of L’ Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22(2), 87-93 (2010).

[2637] D. Nikolopoulos, E. Petraki, E. Vogiannis, Y. Chaldeos, P. Yannakopoulos, S. Kottou,

non-extensive statistics, communication at the Workshop on Complex Systems: New
Trends and Expectations (Santander, 5-9 June 2006).

[2656] F. Petroni and M. Ausloos, High frequency (daily) data analysis of the Southern Oscil-
ation Index. Tsallis nonextensive statistical mechanics approach, in Complex Systems -

[2657] K. Ivanova, H.N. Shirer, T.P. Ackerman and E.E. Clothiaux, Dynamical model and
nonextensive statistical mechanics of liquid water path fluctuations in stratus clouds,

[2658] G. Chisham and M.P. Freeman, On the non-Gaussian nature of ionospheric vorticity,

[2659] A.A. Chernyshov, M.M. Mogilevsky and B.V. Kozelov, Application of nonlinear meth-
(4 pages), doi:10.1088/1742-6596/574/1/012128

[2660] N.O. Ermakova and E.E. Antonova, Particle acceleration by double layers during

[2661] D. Wang, V.P. Singh, Y. Zhu and J. Wua, Stochastic observation error and uncertainty

[2662] V.P. Singh, Entropy theory for movement of moisture in soils, Water Resources Re-
search 46, W03516 (2010).

[2664] H. Luo and V.P. Singh, Entropy theory for two-dimensional velocity distribution, J.

[2665] V.P. Singh and H. Luo, Entropy theory for distribution of one-dimensional velocity
in open channels, J. Hydrologic Engineering 16 (9), 725-735 (2011).

[2666] T. Hasumi, Interoccurrence time statistics in the two-dimensional Burridge-Knopoff

[2667] T. Hasumi, Hypocenter interval statistics between successive earthquakes in the two-
dimensional Burridge-Knopoff model, Physica A 388, 477-482 (2009).

[2668] T. Hasumi, Precursory measure of interoccurrence time associated with large earth-
quakes in the Burridge-Knopoff model, in Let’s Face Chaos Through Nonlinear Dy-

[2670] N. Lotfi and A.H. Darooneh, Nonextensivity measure for the earthquakes network,

quantities by using q-entropy and multifractal random walk, Physica A 391, 5076-5081
(2012).

[2672] Z. Koohi Lai and G.R. Jafari, Non-Gaussianity effects in petrophysical quantities,
...cal applications involves processing maximum and minimum amplitude values of electroencephalographic (EEG) waveform segment including data points from EEG signal, Patent Number(s): US7299088-B1.

and Medecine 34, 355 (2004).

148
mech].

[2772] A. Cerquetti, *Bayesian nonparametric estimation of Patil-Taillie-Tsallis diversity un-

A. Gulec, Ozet fraktallarin yogun madde fiziginde uygulamalari, Doctor Thesis (Ege University, Izmir, Turkey, February 1997).

S. Abe, Correlation induced by Tsallis’ nonextensivity, Physica A 269, 403 (1999).

[2866] J. Katriel and K.D. Sen, Relativistic effects on information measures for hydrogen-like...

(2011).
[2957] P.R. del Santoro, Aproximacao de campo molecular do modelo de Potts generalizado, Master Thesis (Universidade de Sao Paulo-Brazil, 1994).
[2965] L. Borland and J.G. Menchero, Nonextensive effects in tight-binding systems with

G. Felix, W. Nicolazzi, M. Mikolasek, G. Molnar and A. Bousseksou, *Non-extensivity

[3064] Z. Chen and X. Xu, *Multifractality can be a universal signature of phase transitions*, preprint (2013), 1304.3189 [cond-mat.stat-mech].

171

C. Budde, D. Prato and M. Re, Modelos desacoplados de caminatas aleatorias para superdifusion, Anales AFA 12, 6-11 (2000).

A. Robledo and J. Quintana, Anomalous transport, the renormalization group and optimization of entropy, Granular Matter 3, 29 (2001).

C. Vignat and A. Plastino, Geometric origin of probabilistic distributions in statistical mechanics, preprint (2005) [cond-mat/0503337].

R. Kawahara and H. Nakanishi, *Final states of the two dimensional electron plasma trapped in magnetic field*, preprint (2005) [cond-mat/0509239].

F. Verheest, *Comment on “Head-on collision of electron acoustic solitary waves in a plasma with nonextensive hot electrons”*, preprint (2012), 1204.1478 [physics.space-ph].

F.M. Ramos, C. Rodrigues Neto and R. Rosa, *Generalized thermostatistical de-
scription of intermittency and non-extensivity in turbulence and financial markets, preprint (2000) [cond-mat/0010435].

[3202] T. Arimitsu and N. Arimitsu, Multifractal analysis of various PDF in turbulence based on generalized statistics: A way to tangles in superfluid He, in Highlights in Condensed Matter Physics, eds. A. Avella, R. Citro, C. Noce and M. Salerno, AIP

176

[3253] B.K. Shivamoggi, Multi-fractal formulation of compressible fully developed turbulence: Parabolic-profile approximation for the singularity spectrum, Annals Phys. 322, 967-

3282 M.J.A. Bolzan, Um estudo sobre características estatisticas do subdominio inercial da turbulencia desenvolvida em escoamentos acima e dentro da copa da floresta amazonica em terra firme, Doctor Thesis (INPE, Sao Jose dos Campos-Brazil, 2002).

[3371] G. Livadiotis and D.J. McComas, Beyond kappa distributions: Exploiting Tsallis Sta-

[3375] G. Livadiotis and D.J. McComas, Non-equilibrium stationary states in the heliosphere and the influence of pick-up ions, in Pickup Ions Throughout the Heliosphere and Beyond 1302, 70-76 (2010).

[3383] B. Layden, Second-order nonlinear processes in warm unmagnetized plasmas, Doctor Thesis (School of Physics, Faculty of Science, University of Sydney, December 2013).

[3406] M. Coraddu, P. Quarati and A.M. Scarfone, Nuclear astrophysics in a q-environment, in Complexity, Metastability and Nonextensivity, eds. S. Abe, H.J. Herrmann, P.

188

[3485] E. Fragiacomo (ALICE Collaboration), Hadronic resonances from ALICE in pp collisions, EPJ Web of Conferences 36, 00009 (2012), DOI: 10.1051/epjconf/20123600009

The ALICE Collaboration, Production of $\Sigma(1385)^\pm$ and $\Xi(1530)^0$ in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV, Eur. Phys. J. C (2015) 75, 1 (2015), doi: 10.1140/epjc/s10052-014-3191-x

ALICE Collaboration, Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV, CERN-PH-EP-2014-254 08 October 2014, 1411.4969 [nucl-ex].

F. Bellini (ALICE Collaboration), Hadronic resonance production measured by ALICE at the LHC, Nuclear Physics A 931, 846-850 (2014).

Yu. V. Kharlov (ALICE Collaboration), Physics with the ALICE experiment, Physics of Atomic Nuclei 76 (12), 1497-1506 (2013) [Elementary Particles and Fields-Experiment].

ALICE Collaboration, $K^*(892)^0$ and $\Phi(1020)$ production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, preprint (2014), 1404.0495 [nucl-ex].

CMS Collaboration, Strange particle production in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV, J. High Energy Phys. 05, 064 (2011) (40 pages).

I. Sena and A. Deppman, Systematic analysis of transverse momentum distribution
[3520] E. Megias, D.P. Menezes and Airton Deppman, Nonextensive thermodynamics with finite chemical potentials and protoneutron stars, EPJ Web of Conferences 80, 00040 (2014) (6 pages), doi: 10.1051/epjconf/2014800040
[3525] L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean \(p_T \) and \(p_T \) distributions from 200 GeV \(\leq \sqrt{s} \leq 7 \) TeV, Acta Physica Polonica B 41, 1917-1926 (2010).
doi: http://dx.doi.org/10.1016/j.physletb.2013.07.043

[3584] H.J. Haubold, Special functions and pathways for problems in astrophysics: An essay

[3633] M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli,

201

[3706] H. Yu and J.L. Du, The nonextensive parameter for nonequilibrium ele-

[3724] P.H. Yoon, Asymptotic equilibrium between Langmuir turbulence and suprathermal

[3744] N.Y. Tanisha, I. Tasnim, S. Sultana, M. Salahuddin and A.A. Mamun, Electrostatic

[3809] B. Sahu and M. Tribeche, Small amplitude double-layers in an electron depleted dusty

[3825] K. Ourabah and M. Tribeche, Nonextensive statistical mechanics approach to the

[3842] M. Sharifi and A. Parvazian, Electron Bernstein waves in nonextensive statistics,

10.1007/s10509-014-1968-x

[3888] J.L. Reis Jr., J. Amorim and A. Dal Pino Jr., Occupancy of rotational population in

[3904] S. Ashraf, S. Yasmin, M. Asaduzzaman and A.A. Mamun, Electrostatic solitary struc-
tures in a magnetized nonextensive plasma with q-distributed electrons, Fizika plazmy 40 (4), 376-381 (2014).

[3918] A. Esfandyari-Kalejahi and V. Ebrahimi, Computation of generalized and exact dispersion relations for longitudinal plasma waves in nonextensive plasmas and the effects of the nonextensivity on the oscillation modes and damps, Phys. Plasmas 21, 032126

[3950] L.C. Malacarne, R.S. Mendes, E.K. Lenzi, S. Picoli Jr. and J.P. Dal Molin, A non-

[3968] V.K. Verma, An evaluation of condensation temperature T_c and condensate fraction
N_0/N as a Function of T/T_c for Bose-Einstein condensation of trapped atomic gas using non extensive statistical mechanics, J. Pure Appl. and Ind. Phys. 3 (2), 110-114 (2013).

[3971] G. Wilk, Noneextensive critical effects in relativistic nuclear mean field models, communicated at the Conference on Hot and Cold Baryonic Matter (Budapest, 15 to 19 August 2010).

[3974] G.G. Barnafoldi, Tsallis distribution in high-energy heavy ion collisions, communicated at the Conference on Hot and Cold Baryonic Matter (Budapest, 15 to 19 August 2010).

[3976] Z. Schram, Lattice gauge theory with fluctuating temperature, communicated at the Conference on Hot and Cold Baryonic Matter (Budapest, 15 to 19 August 2010).

[3983] L.A. Trevisan, A nonextensive statistical model for the nucleon structure function, communicated at the XXXIV Congresso Paulo Leal Ferreira de Fisica (19-21 October 2011, Sao Paulo).

the 12th Indian Summer School ”Relativistic Heavy Ion Physics”, Prague, 30 August-3 September 1999.

[4082] C. Tsallis and E.P. Borges, Nonextensive statistical mechanics - Applications to nuclear and high energy physics, in Proc. 10th International Workshop on Multiparti-

[4104] G. Wilk, Surprisingly close Tsallis fits to high transverse momentum hadrons produced at LHC, communicated at the IX Workshop on Correlation and Femtoscopy (5-8 November 2013, Acireale, Italy).

P. K. Khandai, P. Sett, P. Shukla and V. Singh, *Hadron spectra in p + p collisions*

[4149] F. Sikler (CMS Collaboration), Identified particles in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV measured with the CMS detector, Nuclear Physics (2014) (8 pages), in press.

[4151] L. Zhu and R.C. Hwa, Effects of shower partons on soft and semihard hadrons pro-

[4167] H.U. Bodeker, C. Beta, T.D. Frank and E. Bodenschatz, Quantitative analysis of
[4184] H.C.B. de Oliveira, F.C. Rangel, C.S. Esteves, F.M.C. Vieira and K. C. Mundim,

[4218] P. Letellier and M. Turmine, *Displacement of voltammetric peaks with nanoparticles*

[4223] T. Oikonomou, Skepsis on the scenario of Biological Evolution provided by stochastic models, preprint (2008), 0803.3471 [cond-mat.stat-mech].

T. Takahashi, *Toward molecular neuroeconomics of obesity*, Medical Hypotheses 75,
393-396 (2010).

[4327] N. Kozuki and N. Fuchikami, Dynamical model of foreign exchange markets leading

[4381] J. Ludescher and A. Bunde, *Universal behavior of the interoccurrence times between

[4397] D.R. Bickel, Time-series intermittency quantified by generalized entropy: An alternative to multifractal analysis, communicated at the ”International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics” (Denton, Texas, 3-6 April 2000).

M. Yasuda, Q-increment deterministic annealing fuzzy c-means clustering using Tsallis entropy, 11th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2014, Article number 6980802, Pages 31-35 (Xiamen, China, 19 to 21 August 2014).

B. Cao, J. Li and F.Y. Nie, Tri-level thresholding using invasive weed optimization based on nonextensive fuzzy entropy, Internat. J. Signal Processing, Image Processing and Pattern Recognition 7 (6), 359-368 (2014), http://dx.doi.org/10.14257/ijsip.2014.7.6.31

Z. Liu, Z. Han, Y. Zhang and Q. Zhang, Multiwavelet packet entropy and its application in transmission line fault recognition and classification, IEEE Transactions on Neural Networks and Learning Systems 25 (11), 2043-2052 (2014), doi: 10.1109/TNNLS.2014.2303086

S. Asgarani and B. Mirza, Probability distribution of (Schwammle and Tsallis) two-

[4433] N. Kalogeropoulos, Vanishing largest Lyapunov exponent and Tsallis entropy, preprint
(2012), 1203.2707 [cond-mat.stat-mech].

W.J. Garbett, Sensitivity of ICF ignition conditions to non-Maxwellian DT fusion reactivity, EPJ Web Conferences 59, 02019 (2013) (4 pages), doi: 10.1051/epjconf/20135902019

C. Miron, Optimisation par recuit simulé généralisé, DEA de Physique Statistique et Phénomènes Non Linéaires, Ecole Normale Supérieure de Lyon-France (1994).

C. Tsallis and D.A. Stariolo, Generalized simulated annealing, Physica A 233, 395 (1996); a preliminary version appeared (in English) as Notas de Fisica/CBPF 026 (June 1994).

Summer School on Complex Systems (June 2005, Santa Fe Institute, NM).

[4705] E. Farkash, Structural prediction of flexible molecular interactions, Doctor Thesis (Tel Aviv University, 2012).

Y. Pak, I.J. Enyedy, J. Varady, J.W. Kung, P.S. Lorenzo, P.M. Blumberg and S.M.
Wang, Structural basis of binding of high-affinity ligands to protein kinase C: Prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis, J. Medicinal Chemistry 44, 1690 (2001).

[4791] D.A. Moreira, E.L. Albuquerque, L.R. da Silva and D.S. Galvao, Low-temperature specific heat spectra considering nonextensive long-range correlated quasiperiodic DNA

[4805] L.R. da Silva, Redes independente de escala e mecanica estatistica nao extensiva, communicated at the 2nd Workshop of the National Institute of Science and Technology for Complex Systems (Rio de Janeiro, 1-5 March 2010).

[4808] H. Hasegawa, Generalized rate-code model for neuron ensembles with finite popula-

B.R. Gadjiev and T.B. Progulova, \textit{Comparative analysis of transport communication

C. Tsallis, As distribuições de Lévy, Revista Brasileira de Ensino de Física 22, 156 (2000) [Portuguese version of the Physics World 1997 article; translated by Prof. Ildeu de Castro Moreira - Universidade Federal do Rio de Janeiro].

C. Tsallis and S. Abe, Advancing Faddeev: Math can deepen Physics understanding, Physics Today 51, 114 (October 1998).

S. Abe, Tsallis entropy and generalization of Boltzmann-Gibbs statistical mechanics, Magazine of the Physical Society of Japan “Butsuri” 54, 287 (1999) [In Japanese].

S. Abe, Tsallis’ nonextensive statistical mechanics - I, Mathematical Sciences 439, 71 (2000) [In Japanese].

S. Abe, Tsallis’ nonextensive statistical mechanics - II, Mathematical Sciences 440, 78 (2000) [In Japanese].

S. Abe, Tsallis’ nonextensive statistical mechanics - III, Mathematical Sciences 441, 68 (2000) [In Japanese].

S. Abe, Tsallis’ nonextensive statistical mechanics - IV, Mathematical Sciences 442, 56 (2000) [In Japanese].

I. Ivanov, Revolution in Thermodynamics, Articles and Remarks [In Russian]

R. Graham, Constantino Tsallis - Describing a new entropy, Santa Fe Institute Bulletin 15, 18 (Fall 2000 issue) [http://www.santafe.edu/sfi/publications/Bulletins/bulletinFall00/features/tsallis.html].

A. Cho, A fresh take on disorder, or disorderly science?, Science 297, 1268 (23 August 2002).

R.V. Chamberlin, Adrian Cho’s article on Tsallis entropy, Science 298, 1172 (2002).

D. Stauffer, Earthquakes power up, Physics World (10 June 2004).

H.J. Haubold, A.M. Mathai and R.K. Saxena, Boltzmann-Gibbs entropy versus Tsall-

[4933] E.P. Borges, Complexidade e mecanica estatistica nao extensiva, Ciencia Hoje 223 (Janeiro/Fevereiro 2006) [in Portuguese].

[4970] I. Bonamassa, Meccanica statistica nonestensiva e sistemi dinamici, Tesi di Laurea di Fisica (Università del Salento, Lecce, 2010).

[4977] B.M. Boghosian, Thermodynamics and statistical mechanics - From Boltzmann and Gibbs to Tsallis, oral communication, College of Science and Engineering, American University of Armenia (20 November 2012, Yerevan).

[4980] P. Charitos, Meeting Constantino Tsallis, [Interview with C. Tsallis], Alice Matters (15 April 2013), http://alicematters.web.cern.ch/?q=archive/201304

276

